{"title":"Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.","authors":"Geng-Ming Hu, Hsin-Wei Chen, Chi-Ming Chen","doi":"10.1093/bib/bbaf452","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce consensus MSClustering, an unsupervised hierarchical network approach that integrates multi-omics data to identify molecular subtypes and conserved pathways across diverse cancers. Using a novel heterogeneity index, we selected 167 key genes with functionally coherent roles validated through Gene Ontology analysis. Applied to 2439 tumors spanning 10 cancer types-and successfully extended to 2675 tumors (12 types) including cases with incomplete molecular data-MSClustering demonstrated: (i) precise classification of major cancer types and breast cancer molecular subtypes; (ii) discovery of novel pan-cancer squamous metaplastic signatures; (iii) exceptional prognostic stratification (log-rank P = 2.3 × 10-46); and (iv) superior performance over existing methods (COCA/SNF) in classification accuracy, cluster robustness, and computational efficiency. The method's multi-scale architecture uniquely resolves breast cancer heterogeneity across biological resolution levels. Pathway analysis further revealed four key oncogenic programs-proteoglycan signaling, chromosomal stability, VEGF-mediated angiogenesis, and drug metabolism-along with disruptions in immune and digestive system functions. This integrative framework marks a significant advancement in cancer genomics by enabling more refined molecular classification, enhanced prognostic insights, and deeper understanding of disease mechanisms. These results highlight the potential of MSClustering to inform the development of clinically relevant biomarkers and support more personalized strategies in precision oncology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf452","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce consensus MSClustering, an unsupervised hierarchical network approach that integrates multi-omics data to identify molecular subtypes and conserved pathways across diverse cancers. Using a novel heterogeneity index, we selected 167 key genes with functionally coherent roles validated through Gene Ontology analysis. Applied to 2439 tumors spanning 10 cancer types-and successfully extended to 2675 tumors (12 types) including cases with incomplete molecular data-MSClustering demonstrated: (i) precise classification of major cancer types and breast cancer molecular subtypes; (ii) discovery of novel pan-cancer squamous metaplastic signatures; (iii) exceptional prognostic stratification (log-rank P = 2.3 × 10-46); and (iv) superior performance over existing methods (COCA/SNF) in classification accuracy, cluster robustness, and computational efficiency. The method's multi-scale architecture uniquely resolves breast cancer heterogeneity across biological resolution levels. Pathway analysis further revealed four key oncogenic programs-proteoglycan signaling, chromosomal stability, VEGF-mediated angiogenesis, and drug metabolism-along with disruptions in immune and digestive system functions. This integrative framework marks a significant advancement in cancer genomics by enabling more refined molecular classification, enhanced prognostic insights, and deeper understanding of disease mechanisms. These results highlight the potential of MSClustering to inform the development of clinically relevant biomarkers and support more personalized strategies in precision oncology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.