{"title":"Relative Entropy and Mutual Information in Gaussian Statistical Field Theory","authors":"Markus Schröfl, Stefan Floerchinger","doi":"10.1007/s00023-024-01522-2","DOIUrl":null,"url":null,"abstract":"<div><p>Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on <i>d</i>, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in <span>\\(\\mathbb {R}^d\\)</span> is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3233 - 3319"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01522-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01522-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on d, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in \(\mathbb {R}^d\) is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.