Oliver Butterley, Giovanni Canestrari, Roberto Castorrini
{"title":"Discontinuities Cause Essential Spectrum on Surfaces","authors":"Oliver Butterley, Giovanni Canestrari, Roberto Castorrini","doi":"10.1007/s00023-024-01499-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional maps with discontinuities are considered. It is shown that, in the presence of discontinuities, the essential spectrum of the transfer operator is large whenever it acts on a Banach space with norm that is stronger than <span>\\(L^\\infty \\)</span> or <span>\\(BV\\)</span>. Three classes of examples are introduced and studied, both expanding and partially expanding. In two dimensions, there is complication due to the geometry of the discontinuities, an issue not present in the one-dimensional case and which is explored in this work.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3075 - 3101"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01499-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01499-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional maps with discontinuities are considered. It is shown that, in the presence of discontinuities, the essential spectrum of the transfer operator is large whenever it acts on a Banach space with norm that is stronger than \(L^\infty \) or \(BV\). Three classes of examples are introduced and studied, both expanding and partially expanding. In two dimensions, there is complication due to the geometry of the discontinuities, an issue not present in the one-dimensional case and which is explored in this work.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.