Averaging Theorems for Slow–Fast Systems in \(\mathbb {Z}\)-extensions (Discrete Time)

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Maxence Phalempin
{"title":"Averaging Theorems for Slow–Fast Systems in \\(\\mathbb {Z}\\)-extensions (Discrete Time)","authors":"Maxence Phalempin","doi":"10.1007/s00023-024-01513-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the averaging method for flows perturbed by a dynamical system preserving an infinite measure. Motivated by the case of perturbation by the collision dynamic on the finite horizon <span>\\(\\mathbb Z\\)</span>-periodic Lorentz gas and in view of future development, we establish our results in a general context of perturbation by <span>\\(\\mathbb Z\\)</span>-extension over chaotic probability preserving dynamical systems. As a by-product, we prove limit theorems for non-stationary Birkhoff sums for such infinite measure preserving dynamical systems.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3149 - 3188"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01513-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the averaging method for flows perturbed by a dynamical system preserving an infinite measure. Motivated by the case of perturbation by the collision dynamic on the finite horizon \(\mathbb Z\)-periodic Lorentz gas and in view of future development, we establish our results in a general context of perturbation by \(\mathbb Z\)-extension over chaotic probability preserving dynamical systems. As a by-product, we prove limit theorems for non-stationary Birkhoff sums for such infinite measure preserving dynamical systems.

\(\mathbb {Z}\) -扩展(离散时间)中慢速系统的平均定理
研究了受动力系统扰动的流的平均方法。考虑到有限视界\(\mathbb Z\) -周期洛伦兹气体碰撞动力学摄动的情况,并考虑到未来的发展,我们在混沌概率保持动力系统上\(\mathbb Z\) -扩展摄动的一般背景下建立了我们的结果。作为副产物,我们证明了这种无限测度保持动力系统的非平稳Birkhoff和的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信