K. Vinotha, C. Vignesh, K. Vinoth, B. Jayasutha, T. Ganesh
{"title":"Ga-Doped CuS Nanostructures: Advancing Photocatalytic Efficiency for Wastewater Treatment and Environmental Applications","authors":"K. Vinotha, C. Vignesh, K. Vinoth, B. Jayasutha, T. Ganesh","doi":"10.1134/S0023158425600543","DOIUrl":null,"url":null,"abstract":"<p>The removal of hazardous pollutants, such as organic compounds and azo dyes like rhodamine B (RhB) and methylene blue (MB), from industrial wastewater is essential for safeguarding public health. Copper sulphide (CuS)-based nanostructures in particular have drawn interest due to their potential for environmental uses, such as photocatalytic degradation. CuS nanostructures have remarkable optical and structural qualities that make them useful for a variety of applications, including photovoltaics and photocatalysis. This study looked into what gallium doping does to the optical, photocatalytic, structural, and morphological properties of Ga-doped CuS nanostructures that were made by chemical solution deposition. The films were examined using sophisticated characterisation methods, such as fluorescence intensity measurements, Raman spectroscopy, FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectroscopy. According to the findings, photocatalytic degradation of MB and RhB dyes under visible light was improved by increasing the Ga concentration; the best efficiency was obtained at 8 wt % Ga doping. Ga-doped CuS nanostructures are highlighted as promising materials for environmental applications like water purification because of this enhancement, which is ascribed to changes in crystal structure, increased surface area, and improved charge separation. However, as performance usually declines beyond the ideal level, the photocatalytic activity of CuS–Ga (>8 wt %) should also be examined to identify the ideal doping density.</p>","PeriodicalId":682,"journal":{"name":"Kinetics and Catalysis","volume":"66 3","pages":"358 - 370"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetics and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0023158425600543","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The removal of hazardous pollutants, such as organic compounds and azo dyes like rhodamine B (RhB) and methylene blue (MB), from industrial wastewater is essential for safeguarding public health. Copper sulphide (CuS)-based nanostructures in particular have drawn interest due to their potential for environmental uses, such as photocatalytic degradation. CuS nanostructures have remarkable optical and structural qualities that make them useful for a variety of applications, including photovoltaics and photocatalysis. This study looked into what gallium doping does to the optical, photocatalytic, structural, and morphological properties of Ga-doped CuS nanostructures that were made by chemical solution deposition. The films were examined using sophisticated characterisation methods, such as fluorescence intensity measurements, Raman spectroscopy, FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectroscopy. According to the findings, photocatalytic degradation of MB and RhB dyes under visible light was improved by increasing the Ga concentration; the best efficiency was obtained at 8 wt % Ga doping. Ga-doped CuS nanostructures are highlighted as promising materials for environmental applications like water purification because of this enhancement, which is ascribed to changes in crystal structure, increased surface area, and improved charge separation. However, as performance usually declines beyond the ideal level, the photocatalytic activity of CuS–Ga (>8 wt %) should also be examined to identify the ideal doping density.
期刊介绍:
Kinetics and Catalysis Russian is a periodical that publishes theoretical and experimental works on homogeneous and heterogeneous kinetics and catalysis. Other topics include the mechanism and kinetics of noncatalytic processes in gaseous, liquid, and solid phases, quantum chemical calculations in kinetics and catalysis, methods of studying catalytic processes and catalysts, the chemistry of catalysts and adsorbent surfaces, the structure and physicochemical properties of catalysts, preparation and poisoning of catalysts, macrokinetics, and computer simulations in catalysis. The journal also publishes review articles on contemporary problems in kinetics and catalysis. The journal welcomes manuscripts from all countries in the English or Russian language.