{"title":"Reinforcement Learning Control for a Class of Discrete-Time Non-Strict Feedback Multi-Agent Systems and Application to Multi-Marine Vehicles","authors":"Weiwei Bai;Dewang Chen;Bo Zhao;Andrea D'Ariano","doi":"10.1109/TIV.2024.3458894","DOIUrl":null,"url":null,"abstract":"A novel control design problem for a class of non-strict feedback multi-agent systems (MAS) in discrete-time form is studied based on reinforcement learning (RL) and applied to multi-marine vehicles (MMV). Firstly, for this kind of discrete-time MAS, a novel system transformation, which can not only solve the noncausal problem that exists in the backstepping method but also reduce the computational complexity, is proposed. Secondly, the algebraic-loop problem inherent in the conventional controller design is solved by compensating the dynamics and using the property of neural network (NN). Thirdly, the multi-gradient recursive (MGR) RL scheme is developed for the sake of designing the optimal controller. Finally, the stability analysis is presented, and all signals are ensured to be semi-global uniformly ultimately bounded (SGUUB) in the Lyapunov's sense. Besides, this scheme is applied to the MMV which can be described in the non-strict feedback form to extend the application of the designed controller. The MMV simulation demonstrates the validation of this scheme.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 5","pages":"3613-3625"},"PeriodicalIF":14.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678848/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A novel control design problem for a class of non-strict feedback multi-agent systems (MAS) in discrete-time form is studied based on reinforcement learning (RL) and applied to multi-marine vehicles (MMV). Firstly, for this kind of discrete-time MAS, a novel system transformation, which can not only solve the noncausal problem that exists in the backstepping method but also reduce the computational complexity, is proposed. Secondly, the algebraic-loop problem inherent in the conventional controller design is solved by compensating the dynamics and using the property of neural network (NN). Thirdly, the multi-gradient recursive (MGR) RL scheme is developed for the sake of designing the optimal controller. Finally, the stability analysis is presented, and all signals are ensured to be semi-global uniformly ultimately bounded (SGUUB) in the Lyapunov's sense. Besides, this scheme is applied to the MMV which can be described in the non-strict feedback form to extend the application of the designed controller. The MMV simulation demonstrates the validation of this scheme.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.