A Multiplex Hypergraph Attribute-Based Graph Collaborative Filtering for Cold-Start POI Recommendation

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Simon Nandwa Anjiri;Derui Ding;Yan Song;Ying Sun
{"title":"A Multiplex Hypergraph Attribute-Based Graph Collaborative Filtering for Cold-Start POI Recommendation","authors":"Simon Nandwa Anjiri;Derui Ding;Yan Song;Ying Sun","doi":"10.1109/TBDATA.2025.3533908","DOIUrl":null,"url":null,"abstract":"Within the scope of location-based services and personalized recommendations, the challenges of recommending new and unvisited points of interest (POIs) to mobile users are compounded by the sparsity of check-in data. Traditional recommendation models often overlook user and POI attributes, which exacerbates data sparsity and cold-start problems. To address this issue, a novel multiplex hypergraph attribute-based graph collaborative filtering is proposed for POI recommendation to create a robust recommendation system capable of handling sparse data and cold-start scenarios. Specifically, a multiplex network hypergraph is first constructed to capture complex relationships between users, POIs, and attributes based on the similarities of attributes, visit frequencies, and preferences. Then, an adaptive variational graph auto-encoder adversarial network is developed to accurately infer the users’/POIs’ preference embeddings from their attribute distributions, which reflect complex attribute dependencies and latent structures within the data. Moreover, a dual graph neural network variant based on both Graphsage K-nearest neighbor networks and gated recurrent units are created to effectively capture various attributes of different modalities in a neighborhood, including temporal dependencies in user preferences and spatial attributes of POIs. Finally, experiments conducted on Foursquare and Yelp datasets reveal the superiority and robustness of the developed model compared to some typical state-of-the-art approaches and adequately illustrate the effectiveness of the issues with cold-start users and POIs.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 5","pages":"2401-2416"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854800/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Within the scope of location-based services and personalized recommendations, the challenges of recommending new and unvisited points of interest (POIs) to mobile users are compounded by the sparsity of check-in data. Traditional recommendation models often overlook user and POI attributes, which exacerbates data sparsity and cold-start problems. To address this issue, a novel multiplex hypergraph attribute-based graph collaborative filtering is proposed for POI recommendation to create a robust recommendation system capable of handling sparse data and cold-start scenarios. Specifically, a multiplex network hypergraph is first constructed to capture complex relationships between users, POIs, and attributes based on the similarities of attributes, visit frequencies, and preferences. Then, an adaptive variational graph auto-encoder adversarial network is developed to accurately infer the users’/POIs’ preference embeddings from their attribute distributions, which reflect complex attribute dependencies and latent structures within the data. Moreover, a dual graph neural network variant based on both Graphsage K-nearest neighbor networks and gated recurrent units are created to effectively capture various attributes of different modalities in a neighborhood, including temporal dependencies in user preferences and spatial attributes of POIs. Finally, experiments conducted on Foursquare and Yelp datasets reveal the superiority and robustness of the developed model compared to some typical state-of-the-art approaches and adequately illustrate the effectiveness of the issues with cold-start users and POIs.
冷启动POI推荐中基于多路超图属性的图协同过滤
在基于位置的服务和个性化推荐的范围内,向移动用户推荐新的和未访问的兴趣点(poi)的挑战由于签到数据的稀疏性而变得更加复杂。传统的推荐模型往往忽略了用户和POI属性,这加剧了数据稀疏性和冷启动问题。为了解决这一问题,提出了一种新的基于多路超图属性的图协同过滤方法,用于POI推荐,以创建一个能够处理稀疏数据和冷启动场景的鲁棒推荐系统。具体来说,首先构建了一个多路网络超图,以捕获基于属性相似性、访问频率和偏好的用户、poi和属性之间的复杂关系。然后,开发了一种自适应变分图自编码器对抗网络,从用户/ poi的属性分布中准确推断出用户/ poi的偏好嵌入,这些属性分布反映了数据中复杂的属性依赖关系和潜在结构。此外,基于Graphsage k近邻网络和门控循环单元,创建了对偶图神经网络变体,以有效捕获邻域中不同模态的各种属性,包括用户偏好的时间依赖性和poi的空间属性。最后,在Foursquare和Yelp数据集上进行的实验表明,与一些典型的最先进的方法相比,所开发的模型具有优越性和鲁棒性,并充分说明了冷启动用户和poi问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信