On Achievable Rates Over Noisy Nanopore Channels

IF 2.2
V. Arvind Rameshwar;Nir Weinberger
{"title":"On Achievable Rates Over Noisy Nanopore Channels","authors":"V. Arvind Rameshwar;Nir Weinberger","doi":"10.1109/JSAIT.2025.3598773","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a recent channel model of a nanopore sequencer proposed by McBain, Viterbo, and Saunderson (2024), termed the noisy nanopore channel (NNC). In essence, an NNC is a duplication channel with structured, Markov inputs, that is corrupted by memoryless noise. We first discuss a (tight) lower bound on the capacity of the NNC in the absence of random noise. Next, we present lower and upper bounds on the channel capacity of general noisy nanopore channels. We then consider two interesting regimes of operation of an NNC: first, where the memory of the input process is large and the random noise introduces erasures, and second, where the rate of measurements of the electric current (also called the sampling rate) is high. For these regimes, we show that it is possible to achieve information rates close to the noise-free capacity, using low-complexity encoding and decoding schemes. In particular, our decoder for the regime of high sampling rates makes use of a change-point detection procedure – a subroutine of immediate relevance for practitioners.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"270-282"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11124514/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a recent channel model of a nanopore sequencer proposed by McBain, Viterbo, and Saunderson (2024), termed the noisy nanopore channel (NNC). In essence, an NNC is a duplication channel with structured, Markov inputs, that is corrupted by memoryless noise. We first discuss a (tight) lower bound on the capacity of the NNC in the absence of random noise. Next, we present lower and upper bounds on the channel capacity of general noisy nanopore channels. We then consider two interesting regimes of operation of an NNC: first, where the memory of the input process is large and the random noise introduces erasures, and second, where the rate of measurements of the electric current (also called the sampling rate) is high. For these regimes, we show that it is possible to achieve information rates close to the noise-free capacity, using low-complexity encoding and decoding schemes. In particular, our decoder for the regime of high sampling rates makes use of a change-point detection procedure – a subroutine of immediate relevance for practitioners.
噪声纳米孔通道上可实现的速率
在本文中,我们考虑了McBain, Viterbo和Saunderson(2024)提出的纳米孔测序器的通道模型,称为噪声纳米孔通道(NNC)。本质上,NNC是一个具有结构化马尔可夫输入的重复信道,它被无记忆噪声破坏。我们首先讨论了在没有随机噪声的情况下NNC容量的(紧)下界。其次,我们给出了一般噪声纳米孔通道容量的下界和上界。然后,我们考虑了NNC的两种有趣的操作机制:首先,输入过程的内存很大,随机噪声会引入擦除,其次,电流的测量率(也称为采样率)很高。对于这些体制,我们表明有可能实现接近无噪声容量的信息率,使用低复杂度的编码和解码方案。特别是,我们的高采样率制度的解码器利用了一个变化点检测程序-一个直接相关的从业者子程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信