An interval-valued spherical fuzzy framework for strategic renewable energy selection

Galip Cihan Yalçın , Sercan Edinsel , Prasenjit Chatterjee , Shervin Zakeri
{"title":"An interval-valued spherical fuzzy framework for strategic renewable energy selection","authors":"Galip Cihan Yalçın ,&nbsp;Sercan Edinsel ,&nbsp;Prasenjit Chatterjee ,&nbsp;Shervin Zakeri","doi":"10.1016/j.dajour.2025.100625","DOIUrl":null,"url":null,"abstract":"<div><div>Many countries are prioritizing renewable energy sources in response to fossil fuel depletion, environmental concerns, and the need for energy resilience. This study evaluates five renewable energy alternatives: Biomass, Wind, Solar, Geothermal, and Hydro, with the aim of reducing foreign energy dependency and enhancing flexibility under potential geopolitical disruptions. A three-stage hybrid decision-making framework is proposed, integrating Modified Preference Selection Index (MPSI) and Multi-Attributive Border Approximation Area Comparison (MABAC) methods within an Interval-Valued Spherical Fuzzy (IVSF) environment. In the first stage, expert input is collected. The second stage applies IVSF-MPSI to determine the criteria weights under uncertainty. The third stage employs IVSF-MABAC to rank the alternatives based on these weights. The results indicate that Solar Energy, with a distance value of 0.2783, is the most suitable renewable energy, followed by Wind, Hydro, Geothermal, and Biomass. The proposed IVSF-MPSI-MABAC model equips decision-makers with a mathematically rigorous, uncertainty-resilient evaluation framework that supports quantitative trade-off analysis, prioritization of capital-intensive projects, and alignment of renewable energy portfolios with long-term energy security and sustainability objectives, while the integrated sensitivity analysis ensures ranking stability and robustness against variations in decision parameters.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100625"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many countries are prioritizing renewable energy sources in response to fossil fuel depletion, environmental concerns, and the need for energy resilience. This study evaluates five renewable energy alternatives: Biomass, Wind, Solar, Geothermal, and Hydro, with the aim of reducing foreign energy dependency and enhancing flexibility under potential geopolitical disruptions. A three-stage hybrid decision-making framework is proposed, integrating Modified Preference Selection Index (MPSI) and Multi-Attributive Border Approximation Area Comparison (MABAC) methods within an Interval-Valued Spherical Fuzzy (IVSF) environment. In the first stage, expert input is collected. The second stage applies IVSF-MPSI to determine the criteria weights under uncertainty. The third stage employs IVSF-MABAC to rank the alternatives based on these weights. The results indicate that Solar Energy, with a distance value of 0.2783, is the most suitable renewable energy, followed by Wind, Hydro, Geothermal, and Biomass. The proposed IVSF-MPSI-MABAC model equips decision-makers with a mathematically rigorous, uncertainty-resilient evaluation framework that supports quantitative trade-off analysis, prioritization of capital-intensive projects, and alignment of renewable energy portfolios with long-term energy security and sustainability objectives, while the integrated sensitivity analysis ensures ranking stability and robustness against variations in decision parameters.
可再生能源战略选择的区间值球形模糊框架
许多国家正在优先考虑可再生能源,以应对化石燃料枯竭、环境问题和能源弹性的需要。本研究评估了五种可再生能源替代品:生物质能、风能、太阳能、地热能和水能,旨在减少对外国能源的依赖,并在潜在的地缘政治干扰下提高灵活性。在区间值球面模糊(IVSF)环境下,结合修正偏好选择指数(MPSI)和多属性边界近似面积比较(MABAC)方法,提出了一种三阶段混合决策框架。在第一阶段,收集专家意见。第二阶段应用IVSF-MPSI确定不确定条件下的标准权重。第三阶段使用IVSF-MABAC根据这些权重对备选方案进行排名。结果表明,太阳能是最适合的可再生能源,距离值为0.2783,其次是风能、水能、地热和生物质能。拟议的IVSF-MPSI-MABAC模型为决策者提供了一个数学上严谨的、具有不确定性弹性的评估框架,该框架支持定量权衡分析、资本密集型项目的优先级,以及可再生能源投资组合与长期能源安全和可持续发展目标的一致性,而综合敏感性分析确保了排序的稳定性和对决策参数变化的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信