Reproducible density functional theory predictions of bandgaps for materials

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Chenxi Lu , Musen Li , Michael J. Ford , Rika Kobayashi , Roger D. Amos , Jeffrey R. Reimers
{"title":"Reproducible density functional theory predictions of bandgaps for materials","authors":"Chenxi Lu ,&nbsp;Musen Li ,&nbsp;Michael J. Ford ,&nbsp;Rika Kobayashi ,&nbsp;Roger D. Amos ,&nbsp;Jeffrey R. Reimers","doi":"10.1016/j.cocom.2025.e01122","DOIUrl":null,"url":null,"abstract":"<div><div>Even though reproducible computational procedures for density-functional-theory (DFT) calculations of molecular properties are well established, the additional complexities for calculations of materials properties present significant current issues. Considering a randomly selected set of 340 3D materials, we demonstrate that standard computational protocols lead to c. a. 20 % occurrences of significant failures during bandgap calculations. The bandgap is a quintessential materials property that underpins the prediction of most other properties. Examined herein are the effects of the choice of the pseudopotential to describe core electrons, the plane-wave basis-set cutoff energy, and the Brillouin-zone integration. For the pseudopotential and the cutoff energy, optimization of internal computational parameters is performed. For the Brillouin-zone integration, a new computational protocol is developed that chooses grids by minimization of interpolation errors using the second-derivative matrix of the orbital energies. This is shown to provide significant enhancement over established procedures that seek merely to maximize integration-grid densities.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01122"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Even though reproducible computational procedures for density-functional-theory (DFT) calculations of molecular properties are well established, the additional complexities for calculations of materials properties present significant current issues. Considering a randomly selected set of 340 3D materials, we demonstrate that standard computational protocols lead to c. a. 20 % occurrences of significant failures during bandgap calculations. The bandgap is a quintessential materials property that underpins the prediction of most other properties. Examined herein are the effects of the choice of the pseudopotential to describe core electrons, the plane-wave basis-set cutoff energy, and the Brillouin-zone integration. For the pseudopotential and the cutoff energy, optimization of internal computational parameters is performed. For the Brillouin-zone integration, a new computational protocol is developed that chooses grids by minimization of interpolation errors using the second-derivative matrix of the orbital energies. This is shown to provide significant enhancement over established procedures that seek merely to maximize integration-grid densities.
材料带隙的可重复密度泛函理论预测
尽管密度泛函理论(DFT)计算分子性质的可重复计算程序已经很好地建立起来,但材料性质计算的额外复杂性仍然是当前的重大问题。考虑到一组随机选择的340种3D材料,我们证明了标准计算协议导致在带隙计算期间发生约20%的重大故障。带隙是典型的材料特性,是预测大多数其他特性的基础。本文考察了描述核心电子的赝势选择、平面波基集截止能量和布里渊区积分的影响。对赝势和截止能进行了内部计算参数的优化。对于布里渊区域积分,提出了一种新的计算方案,利用轨道能量的二阶导数矩阵,通过最小化插值误差来选择网格。事实证明,这比仅仅寻求最大化集成网格密度的既定程序提供了显著的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信