Regularity of minimal surfaces with capillary boundary conditions

IF 2.7 1区 数学 Q1 MATHEMATICS
Luigi De Masi, Nick Edelen, Carlo Gasparetto, Chao Li
{"title":"Regularity of minimal surfaces with capillary boundary conditions","authors":"Luigi De Masi,&nbsp;Nick Edelen,&nbsp;Carlo Gasparetto,&nbsp;Chao Li","doi":"10.1002/cpa.70008","DOIUrl":null,"url":null,"abstract":"<p>We prove <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>-regularity theorems for varifolds with capillary boundary condition in a Riemannian manifold. These varifolds were first introduced by Kagaya–Tonegawa. We establish a uniform first variation control for all such varifolds (and free-boundary varifolds generally) satisfying a sharp density bound and prove that if a capillary varifold has bounded mean curvature and is close to a capillary half-plane with angle not equal to <span></span><math>\n <semantics>\n <mstyle>\n <mfrac>\n <mi>π</mi>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <annotation>$\\tfrac{\\pi }{2}$</annotation>\n </semantics></math>, then it coincides with a <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <annotation>$C^{1,\\alpha }$</annotation>\n </semantics></math> properly embedded hypersurface. We apply our theorem to deduce regularity at a generic point along the boundary in the region where the density is strictly less than 1.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 12","pages":"2436-2502"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.70008","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove ε $\varepsilon$ -regularity theorems for varifolds with capillary boundary condition in a Riemannian manifold. These varifolds were first introduced by Kagaya–Tonegawa. We establish a uniform first variation control for all such varifolds (and free-boundary varifolds generally) satisfying a sharp density bound and prove that if a capillary varifold has bounded mean curvature and is close to a capillary half-plane with angle not equal to π 2 $\tfrac{\pi }{2}$ , then it coincides with a C 1 , α $C^{1,\alpha }$ properly embedded hypersurface. We apply our theorem to deduce regularity at a generic point along the boundary in the region where the density is strictly less than 1.

Abstract Image

毛细边界条件下最小曲面的规则性
证明了黎曼流形中具有毛细边界条件的变分的正则性定理。这些变量最初是由香谷利根川提出的。我们建立了满足锐密度界的所有这类变分(以及一般的自由边界变分)的统一一阶变分控制,并证明了如果一个毛细变分具有有界平均曲率,并且靠近一个角不等于的毛细半平面,那么它与一个适当嵌入的超曲面重合。在密度严格小于1的区域中,我们应用该定理推导出沿边界的一般点上的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信