Optimizing Electronic Structure to Achieve High-Capacity and Long-Life Layered Oxide Cathode for Potassium-Ion Batteries.

IF 16.9
Haowei Tang, Zhiyu Lu, Zeyu Yuan, Liping Duan, Yingna Zhang, Xiaosi Zhou, Yue Lin, Haoshen Zhou
{"title":"Optimizing Electronic Structure to Achieve High-Capacity and Long-Life Layered Oxide Cathode for Potassium-Ion Batteries.","authors":"Haowei Tang, Zhiyu Lu, Zeyu Yuan, Liping Duan, Yingna Zhang, Xiaosi Zhou, Yue Lin, Haoshen Zhou","doi":"10.1002/anie.202511899","DOIUrl":null,"url":null,"abstract":"<p><p>Layered Mn-based oxide cathodes demonstrate great potential for application in potassium-ion batteries. However, issues such as Jahn-Teller distortion of Mn and significant volume changes during K<sup>+</sup> intercalation/removal severely limit their practical use. To address these challenges, we successfully synthesize the cathode material K<sub>0.7</sub>Fe<sub>0.3</sub>Ni<sub>0.15</sub>Mg<sub>0.03</sub>Ti<sub>0.02</sub>Mn<sub>0.5</sub>O<sub>2</sub> (KFNMTMO) by introducing low-valence ions and incorporating active metal elements. The results show that the introduction of low-valence ions raises the average oxidation state of Mn to approximately +4, causing the projected density of states of Mn to shift above the Fermi level. This effectively suppresses the redox activity of Mn, making it primarily responsible for stabilizing layered structure. Meanwhile, electronic structure optimization considerably activates the redox couples of other active elements such as Ni<sup>2+</sup>/Ni<sup>3+</sup> and Fe<sup>3+</sup>/Fe<sup>4+</sup>. This synergistic effect not only alleviates Jahn-Teller distortion but also, through the addition of the less electronegative Mg<sup>2+</sup> ions, markedly enhances the orbital hybridization between transition metals and oxygen atoms, further improving the stability of crystal lattice. Consequently, the KFNMTMO cathode exhibits excellent electrochemical performance, achieving a reversible capacity of 114.3 mAh g<sup>-1</sup> at 20 mA g<sup>-1</sup>, an energy density of 328 Wh kg<sup>-1</sup>, and remarkable cycling stability with a capacity retention of 81.5% after 800 cycles.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202511899"},"PeriodicalIF":16.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202511899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Layered Mn-based oxide cathodes demonstrate great potential for application in potassium-ion batteries. However, issues such as Jahn-Teller distortion of Mn and significant volume changes during K+ intercalation/removal severely limit their practical use. To address these challenges, we successfully synthesize the cathode material K0.7Fe0.3Ni0.15Mg0.03Ti0.02Mn0.5O2 (KFNMTMO) by introducing low-valence ions and incorporating active metal elements. The results show that the introduction of low-valence ions raises the average oxidation state of Mn to approximately +4, causing the projected density of states of Mn to shift above the Fermi level. This effectively suppresses the redox activity of Mn, making it primarily responsible for stabilizing layered structure. Meanwhile, electronic structure optimization considerably activates the redox couples of other active elements such as Ni2+/Ni3+ and Fe3+/Fe4+. This synergistic effect not only alleviates Jahn-Teller distortion but also, through the addition of the less electronegative Mg2+ ions, markedly enhances the orbital hybridization between transition metals and oxygen atoms, further improving the stability of crystal lattice. Consequently, the KFNMTMO cathode exhibits excellent electrochemical performance, achieving a reversible capacity of 114.3 mAh g-1 at 20 mA g-1, an energy density of 328 Wh kg-1, and remarkable cycling stability with a capacity retention of 81.5% after 800 cycles.

优化电子结构实现高容量、长寿命钾离子电池层状氧化物阴极。
层状锰基氧化物阴极在钾离子电池中具有很大的应用潜力。然而,诸如Mn的Jahn-Teller畸变和K+插入/去除过程中显著的体积变化等问题严重限制了它们的实际应用。为了解决这些问题,我们成功地通过引入低价离子和加入活性金属元素合成了阴极材料K0.7Fe0.3Ni0.15Mg0.03Ti0.02Mn0.5O2 (KFNMTMO)。结果表明,低价离子的引入使Mn的平均氧化态提高到+4左右,导致Mn态的投影密度在费米能级以上移动。这有效地抑制了锰的氧化还原活性,使其主要负责稳定层状结构。同时,电子结构优化显著激活了Ni2+/Ni3+和Fe3+/Fe4+等其他活性元素的氧化还原对。这种协同效应不仅减轻了Jahn-Teller畸变,而且通过电负性较小的Mg2+离子的加入,显著增强了过渡金属与氧原子之间的轨道杂化,进一步提高了晶格的稳定性。因此,KFNMTMO阴极表现出优异的电化学性能,在20 mA g-1时的可逆容量为114.3 mAh g-1,能量密度为328 Wh kg-1,循环800次后的容量保持率为81.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信