Collective Dynamics of Frustrated Biological Neuron Networks.

PRX life Pub Date : 2025-07-01 Epub Date: 2025-07-02 DOI:10.1103/1258-cl48
Guanyu Li, Ryan LeFebre, Alia Starman, Patrick Chappell, Andrew Mugler, Bo Sun
{"title":"Collective Dynamics of Frustrated Biological Neuron Networks.","authors":"Guanyu Li, Ryan LeFebre, Alia Starman, Patrick Chappell, Andrew Mugler, Bo Sun","doi":"10.1103/1258-cl48","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain normal functionality, it is necessary for a multicellular organism to generate robust responses to external temporal signals. However, the underlying mechanisms to coordinate the collective dynamics of cells remain poorly understood. Here, we study the calcium activity of biological neuron networks excited by periodic ATP stimuli. We use micropatterning to control the cells' physical connectivity. We find that whereas isolated cells become more synchronized in their calcium activity at long driving periods, connected cells become less synchronized, despite expressing more gap junctions which enable calcium exchange. To understand this result, we use a mathematical model in which a bifurcation analysis has previously shown coupling-induced desynchronization in an oscillatory network. Using parameters close to this bifurcation but in the excitable regime, we find that this desynchronization persists and can explain the experimental observations. The model further predicts that co-culturing with gap-junction-deficient cells should restore synchronization, which experiments confirm. Combining quantitative experiments, the physical and biological manipulation of cells, and mathematical modeling, our results suggest that cell-to-cell connectivity significantly affects how populations encode an external temporal signal as it slows down: Sparse networks synchronize due to longer entrainment, whereas highly connected networks can desynchronize due to dynamic frustration.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/1258-cl48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To maintain normal functionality, it is necessary for a multicellular organism to generate robust responses to external temporal signals. However, the underlying mechanisms to coordinate the collective dynamics of cells remain poorly understood. Here, we study the calcium activity of biological neuron networks excited by periodic ATP stimuli. We use micropatterning to control the cells' physical connectivity. We find that whereas isolated cells become more synchronized in their calcium activity at long driving periods, connected cells become less synchronized, despite expressing more gap junctions which enable calcium exchange. To understand this result, we use a mathematical model in which a bifurcation analysis has previously shown coupling-induced desynchronization in an oscillatory network. Using parameters close to this bifurcation but in the excitable regime, we find that this desynchronization persists and can explain the experimental observations. The model further predicts that co-culturing with gap-junction-deficient cells should restore synchronization, which experiments confirm. Combining quantitative experiments, the physical and biological manipulation of cells, and mathematical modeling, our results suggest that cell-to-cell connectivity significantly affects how populations encode an external temporal signal as it slows down: Sparse networks synchronize due to longer entrainment, whereas highly connected networks can desynchronize due to dynamic frustration.

受挫生物神经元网络的集体动力学。
为了维持正常的功能,多细胞生物必须对外部时间信号产生强大的反应。然而,协调细胞集体动力学的潜在机制仍然知之甚少。在这里,我们研究了周期性ATP刺激下生物神经元网络的钙活性。我们使用微模式来控制细胞的物理连接。我们发现,在长时间的驱动过程中,孤立的细胞在钙活性方面变得更加同步,而连接的细胞变得不那么同步,尽管表达了更多的间隙连接,使钙交换成为可能。为了理解这一结果,我们使用了一个数学模型,其中的分岔分析先前已经显示了振荡网络中耦合诱导的去同步。使用接近该分岔的参数,但在可激发状态下,我们发现这种非同步持续存在,并且可以解释实验观察结果。该模型进一步预测,与间隙连接缺陷细胞共培养应恢复同步,实验证实了这一点。结合定量实验、细胞的物理和生物操作以及数学建模,我们的研究结果表明,细胞间的连接显著影响种群如何编码外部时间信号,因为它减慢了:稀疏网络由于更长的携带而同步,而高度连接的网络可能由于动态挫折而不同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信