Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola
{"title":"Fluctuating landscapes and heavy tails in animal behavior.","authors":"Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola","doi":"10.1103/prxlife.2.023001","DOIUrl":null,"url":null,"abstract":"<p><p>Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of <i>C. elegans</i> locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a <i>C. elegans</i> mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.2.023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of C. elegans locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a C. elegans mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.