Fluctuating landscapes and heavy tails in animal behavior.

PRX life Pub Date : 2024-04-01 Epub Date: 2024-04-02 DOI:10.1103/prxlife.2.023001
Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola
{"title":"Fluctuating landscapes and heavy tails in animal behavior.","authors":"Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola","doi":"10.1103/prxlife.2.023001","DOIUrl":null,"url":null,"abstract":"<p><p>Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of <i>C. elegans</i> locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a <i>C. elegans</i> mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.2.023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of C. elegans locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a C. elegans mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.

动物行为中的起伏地貌和厚重尾巴。
动物的行为是由无数的机制形成的,这些机制在很大的范围内起作用,这阻碍了定量推理和一般原则的确定。本文将数据分析与理论相结合,探讨行为可塑性与动物行为中常见的重尾统计之间的关系。具体来说,我们首先利用秀丽隐杆线虫运动的高分辨率记录来显示长期行为之间的随机转变表现出重尾首次通过时间分布和相关函数。如此沉重的尾巴可以解释为随着时间的推移行为适应缓慢。这个特殊的结果激发了我们的第二步,即引入一个一般模型,在这个模型中,我们将准平稳多井势的快速动力学与非遍历、缓慢变化的模式分离开来。然后,我们证明了重尾通常出现在这样的模型中,并且我们提供了由此产生的函数形式的理论推导,它可以成为一个幂律,其指数取决于波动的强度。最后,我们通过在秀丽隐杆线虫突变体中进行测试,为我们的发现的普遍性提供直接支持,在该突变体中,适应性受到抑制,重尾因此消失,并记录了重尾再次普遍存在的斑马鱼幼虫游泳行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信