Strong Dipole Moments and Increased Charge Transfer in Polymer-Based Solid Electrolyte Enable Wide-Temperature Solid-State Lithium Metal Batteries.

IF 16.9
Weizhong Liang, Yuxuan Liu, Lin Dai, Shen Li, Zhaoyu Sun, Kun Zhao, Biao Zhang, Zengsheng Ma, Min Zhu, Jun Liu
{"title":"Strong Dipole Moments and Increased Charge Transfer in Polymer-Based Solid Electrolyte Enable Wide-Temperature Solid-State Lithium Metal Batteries.","authors":"Weizhong Liang, Yuxuan Liu, Lin Dai, Shen Li, Zhaoyu Sun, Kun Zhao, Biao Zhang, Zengsheng Ma, Min Zhu, Jun Liu","doi":"10.1002/anie.202513604","DOIUrl":null,"url":null,"abstract":"<p><p>The development of solid electrolyte interfaces (SEI) using lithium and nitrate salts represents a promising approach to enhancing the performance of lithium metal batteries (LMBs). However, the inherent stability of lithium and nitrate salts often results in incomplete decomposition, leading to the formation of inhomogeneous SEI that degrade battery performance. In this study, a strong dipole moment and increased charge transfer strategy are used, which can effectively catalyze the decomposition of NO<sub>3</sub> <sup>-</sup> and TFSI<sup>-</sup> and accelerate the migration of Li<sup>+</sup>, as well as the formation of Li<sub>3</sub>N-LiF-rich SEI. Li/CSEs/LFP batteries demonstrated excellent cycling stability over a wide temperature range (30-100 °C) and across various charge/discharge rates (1C-5C). Notably, pouch cells with high loading of Ni<sub>90</sub>Co<sub>5</sub>Mn<sub>5</sub> and LFP exhibited remarkable electrochemical performance and safety. This work presents a strong dipole moment and increased charge transfer strategy for optimizing polymer electrolytes, providing new insights into optimizing the performance of LMBs.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202513604"},"PeriodicalIF":16.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202513604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of solid electrolyte interfaces (SEI) using lithium and nitrate salts represents a promising approach to enhancing the performance of lithium metal batteries (LMBs). However, the inherent stability of lithium and nitrate salts often results in incomplete decomposition, leading to the formation of inhomogeneous SEI that degrade battery performance. In this study, a strong dipole moment and increased charge transfer strategy are used, which can effectively catalyze the decomposition of NO3 - and TFSI- and accelerate the migration of Li+, as well as the formation of Li3N-LiF-rich SEI. Li/CSEs/LFP batteries demonstrated excellent cycling stability over a wide temperature range (30-100 °C) and across various charge/discharge rates (1C-5C). Notably, pouch cells with high loading of Ni90Co5Mn5 and LFP exhibited remarkable electrochemical performance and safety. This work presents a strong dipole moment and increased charge transfer strategy for optimizing polymer electrolytes, providing new insights into optimizing the performance of LMBs.

聚合物基固体电解质中强偶极矩和电荷转移的增加使宽温度固态锂金属电池成为可能。
利用锂盐和硝酸盐开发固体电解质界面(SEI)是提高锂金属电池(lmb)性能的一种很有前途的方法。然而,锂和硝酸盐固有的稳定性往往导致不完全分解,导致不均匀SEI的形成,从而降低电池性能。本研究采用强偶极矩和增加电荷转移策略,可以有效催化NO3 -和TFSI-的分解,加速Li+的迁移,形成li3n -富lif的SEI。Li/CSEs/LFP电池在宽温度范围(30-100°C)和各种充电/放电速率(1C-5C)下表现出出色的循环稳定性。值得注意的是,高负载Ni90Co5Mn5和LFP的袋状电池具有显著的电化学性能和安全性。这项工作提出了一个强偶极矩和增加电荷转移的策略来优化聚合物电解质,为优化lmb的性能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信