Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping.

Mohammed Alsubaie, Sirani M Perera, Linxia Gu, Sean B Subasi, Ovidiu C Andronesi, Xianqi Li
{"title":"Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping.","authors":"Mohammed Alsubaie, Sirani M Perera, Linxia Gu, Sean B Subasi, Ovidiu C Andronesi, Xianqi Li","doi":"10.1007/s10278-025-01652-x","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution magnetic resonance spectroscopic imaging (MRSI) plays a crucial role in characterizing tumor metabolism and guiding clinical decisions for glioma patients. However, due to inherently low metabolite concentrations and signal-to-noise ratio (SNR) limitations, MRSI data are often acquired at low spatial resolution, hindering accurate visualization of tumor heterogeneity and margins. In this study, we propose a novel deep learning framework based on conditional denoising diffusion probabilistic models for super-resolution reconstruction of MRSI, with a particular focus on mutant isocitrate dehydrogenase (IDH) gliomas. The model progressively transforms noise into high-fidelity metabolite maps through a learned reverse diffusion process, conditioned on low-resolution inputs. Leveraging a Self-Attention UNet backbone, the proposed approach integrates global contextual features and achieves superior detail preservation. On simulated patient data, the proposed method achieved Structural Similarity Index Measure (SSIM) values of 0.956, 0.939, and 0.893; Peak Signal-to-Noise Ratio (PSNR) values of 29.73, 27.84, and 26.39 dB; and Learned Perceptual Image Patch Similarity (LPIPS) values of 0.025, 0.036, and 0.045 for upsampling factors of 2, 4, and 8, respectively, with LPIPS improvements statistically significant compared to all baselines ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> </math> ). We validated the framework on in vivo MRSI from healthy volunteers and glioma patients, where it accurately reconstructed small lesions, preserved critical textural and structural information, and enhanced tumor boundary delineation in metabolic ratio maps, revealing heterogeneity not visible in other approaches. These results highlight the promise of diffusion-based deep learning models as clinically relevant tools for noninvasive, high-resolution metabolic imaging in glioma and potentially other neurological disorders.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01652-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution magnetic resonance spectroscopic imaging (MRSI) plays a crucial role in characterizing tumor metabolism and guiding clinical decisions for glioma patients. However, due to inherently low metabolite concentrations and signal-to-noise ratio (SNR) limitations, MRSI data are often acquired at low spatial resolution, hindering accurate visualization of tumor heterogeneity and margins. In this study, we propose a novel deep learning framework based on conditional denoising diffusion probabilistic models for super-resolution reconstruction of MRSI, with a particular focus on mutant isocitrate dehydrogenase (IDH) gliomas. The model progressively transforms noise into high-fidelity metabolite maps through a learned reverse diffusion process, conditioned on low-resolution inputs. Leveraging a Self-Attention UNet backbone, the proposed approach integrates global contextual features and achieves superior detail preservation. On simulated patient data, the proposed method achieved Structural Similarity Index Measure (SSIM) values of 0.956, 0.939, and 0.893; Peak Signal-to-Noise Ratio (PSNR) values of 29.73, 27.84, and 26.39 dB; and Learned Perceptual Image Patch Similarity (LPIPS) values of 0.025, 0.036, and 0.045 for upsampling factors of 2, 4, and 8, respectively, with LPIPS improvements statistically significant compared to all baselines ( p < 0.01 ). We validated the framework on in vivo MRSI from healthy volunteers and glioma patients, where it accurately reconstructed small lesions, preserved critical textural and structural information, and enhanced tumor boundary delineation in metabolic ratio maps, revealing heterogeneity not visible in other approaches. These results highlight the promise of diffusion-based deep learning models as clinically relevant tools for noninvasive, high-resolution metabolic imaging in glioma and potentially other neurological disorders.

利用扩散模型进行肿瘤代谢映射的超分辨率磁共振光谱成像。
高分辨率磁共振光谱成像(MRSI)在表征肿瘤代谢和指导胶质瘤患者的临床决策方面起着至关重要的作用。然而,由于固有的低代谢物浓度和信噪比(SNR)的限制,MRSI数据通常以低空间分辨率获取,阻碍了肿瘤异质性和边缘的准确可视化。在这项研究中,我们提出了一种新的基于条件去噪扩散概率模型的深度学习框架,用于核磁共振成像的超分辨率重建,特别关注突变异柠檬酸脱氢酶(IDH)胶质瘤。该模型通过学习的反向扩散过程,在低分辨率输入的条件下,逐步将噪声转换为高保真的代谢物图。利用自关注UNet主干网,该方法集成了全局上下文特征,并实现了优越的细节保存。在模拟患者数据上,该方法的结构相似指数测量(SSIM)值分别为0.956、0.939和0.893;峰值信噪比(PSNR)分别为29.73、27.84和26.39 dB;上采样因子为2、4和8时,学习感知图像斑块相似度(LPIPS)分别为0.025、0.036和0.045,与所有基线相比,LPIPS的改善具有统计学意义(p 0.01)。我们在健康志愿者和胶质瘤患者的体内MRSI上验证了该框架,在那里它准确地重建了小病变,保留了关键的纹理和结构信息,并增强了代谢比率图中肿瘤边界的描绘,揭示了其他方法中不可见的异质性。这些结果突出了基于弥散的深度学习模型作为临床相关工具在神经胶质瘤和其他潜在神经系统疾病的无创、高分辨率代谢成像方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信