Identifying high glucose variability using non-glycemic factors in low continuous glucose monitoring use settings.

IF 2.3
Suresh Rama Chandran, Ming Ming Teh, Hong Chang Tan, May Zin Oo, Alcey Ang Li Chang, Daphne Gardner
{"title":"Identifying high glucose variability using non-glycemic factors in low continuous glucose monitoring use settings.","authors":"Suresh Rama Chandran, Ming Ming Teh, Hong Chang Tan, May Zin Oo, Alcey Ang Li Chang, Daphne Gardner","doi":"10.1016/j.pcd.2025.08.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Identifying non-glycemic factors associated with high Glucose variability (GV).</p><p><strong>Methods: </strong>A cross-sectional observational study recruited people with type 2 diabetes, who wore a Freestyle Libre Pro CGM.</p><p><strong>Independent variables: </strong>Age, sex, BMI, diabetes medication, diabetes duration, HbA1c and estimated glomerular filtration rate (eGFR). CGM-derived variables calculated included Time-in-Range (TIR, 70-180 mg/dl), below-range 1 (TBR1, <70 mg/dl), -below-range 2 (TBR2, <54 mg/dl) and -above-range (TAR, >180 mg/dl), coefficient of variation (%CV). A logistic regression model examined independent variables associated with high GV (CV ≥36 %). All analysis was done on R version 4.3.1 RESULTS: T2D cohort (n = 403), 46 % women, had median age of 61 y, BMI of 26.5 kg/m<sup>2</sup>, diabetes duration 14 y, HbA1c 7.8 %(62 mmol/mol) and creatinine of 75 µmol/L. Using sulphonylurea, premixed or basal-bolus insulin had an odds ratio (OR) of 4.7 - 5.2 for CV ≥ 36 %. Longer diabetes duration [OR 1.2], and lower eGFR [OR 1.2] were associated with higher odds and older age [OR 0.8]and higher BMI [0.8] were associated with lower odds of CV≥ 36 %. Sex and HbA1c had no association with high GV.</p><p><strong>Conclusion: </strong>Nonglycemic-factors like medication type, diabetes duration and eGFR can aid in identification of high GV even in low-CGM use settings.</p>","PeriodicalId":94177,"journal":{"name":"Primary care diabetes","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Primary care diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.pcd.2025.08.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Identifying non-glycemic factors associated with high Glucose variability (GV).

Methods: A cross-sectional observational study recruited people with type 2 diabetes, who wore a Freestyle Libre Pro CGM.

Independent variables: Age, sex, BMI, diabetes medication, diabetes duration, HbA1c and estimated glomerular filtration rate (eGFR). CGM-derived variables calculated included Time-in-Range (TIR, 70-180 mg/dl), below-range 1 (TBR1, <70 mg/dl), -below-range 2 (TBR2, <54 mg/dl) and -above-range (TAR, >180 mg/dl), coefficient of variation (%CV). A logistic regression model examined independent variables associated with high GV (CV ≥36 %). All analysis was done on R version 4.3.1 RESULTS: T2D cohort (n = 403), 46 % women, had median age of 61 y, BMI of 26.5 kg/m2, diabetes duration 14 y, HbA1c 7.8 %(62 mmol/mol) and creatinine of 75 µmol/L. Using sulphonylurea, premixed or basal-bolus insulin had an odds ratio (OR) of 4.7 - 5.2 for CV ≥ 36 %. Longer diabetes duration [OR 1.2], and lower eGFR [OR 1.2] were associated with higher odds and older age [OR 0.8]and higher BMI [0.8] were associated with lower odds of CV≥ 36 %. Sex and HbA1c had no association with high GV.

Conclusion: Nonglycemic-factors like medication type, diabetes duration and eGFR can aid in identification of high GV even in low-CGM use settings.

在低连续血糖监测中使用非血糖因子识别高血糖变异性。
目的:确定与高葡萄糖变异性(GV)相关的非血糖因子。方法:一项横断面观察性研究招募了2型糖尿病患者,他们佩戴了Freestyle Libre Pro CGM。自变量:年龄、性别、BMI、糖尿病药物、糖尿病病程、HbA1c和估计的肾小球滤过率(eGFR)。计算的cgm衍生变量包括Time-in-Range (TIR, 70-180 mg/dl),低于范围1 (TBR1, 180 mg/dl),变异系数(%CV)。logistic回归模型检验了与高GV相关的自变量(CV≥36 %)。结果:T2D队列(n = 403),46 %女性,中位年龄61 y, BMI 26.5 kg/m2,糖尿病病程14 y, HbA1c 7.8 %(62 mmol/mol),肌酐75µmol/L。当CV≥ 36 %时,使用磺脲、预混胰岛素或基础胰岛素的比值比(or)为4.7 - 5.2。较长的糖尿病病程[OR 1.2]和较低的eGFR [OR 1.2]与较高的几率相关,年龄较大[OR 0.8]和较高的BMI[0.8]与CV≥ 36 %的较低几率相关。性别和HbA1c与高GV无关。结论:非血糖因素如药物类型、糖尿病病程和eGFR可以帮助识别高GV,即使在低cgm使用环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信