ChronoDeck: A Visual Analytics Approach for Hierarchical Time Series Analysis.

IF 6.5
Lingyu Meng, Shuhan Liu, Keyi Yang, Jiabin Xu, Zikun Deng, Di Weng, Yingcai Wu
{"title":"ChronoDeck: A Visual Analytics Approach for Hierarchical Time Series Analysis.","authors":"Lingyu Meng, Shuhan Liu, Keyi Yang, Jiabin Xu, Zikun Deng, Di Weng, Yingcai Wu","doi":"10.1109/TVCG.2025.3602273","DOIUrl":null,"url":null,"abstract":"<p><p>Hierarchical time series data comprises a collection of time series aggregated at multiple levels based on categorical, geographical, or physical constraints, the analysis of which aids analysts across various domains like retail, finance, and energy, in gaining valuable insights and making informed decisions. However, existing interactive exploratory analysis approaches for hierarchical time series data fall short in analyzing time series across different aggregation levels and supporting more complex analytical tasks beyond common ones like summarize and compare. These limitations motivate us to develop a new visual analytics approach. We first generalize a taxonomy to delineate various tasks in hierarchical time series analysis, derived from literature survey and expert interviews. Based on this taxonomy, we develop ChronoDeck, an interactive system that incorporates a multi-column hierarchical time series visualization for implementing various analytical tasks and distilling insights from the data. ChronoDeck visualizes each aggregation level of hierarchical time series with a combination of coordinated dimensionality reduction and small multiples visualizations, alongside interactions including highlight, align, filter, and select, assisting users in the visualization, comparison, and transformation of hierarchical time series, as well as identifying the entities of interest. The effectiveness of ChronoDeck is demonstrated by case studies on three real-world datasets and expert interviews.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3602273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical time series data comprises a collection of time series aggregated at multiple levels based on categorical, geographical, or physical constraints, the analysis of which aids analysts across various domains like retail, finance, and energy, in gaining valuable insights and making informed decisions. However, existing interactive exploratory analysis approaches for hierarchical time series data fall short in analyzing time series across different aggregation levels and supporting more complex analytical tasks beyond common ones like summarize and compare. These limitations motivate us to develop a new visual analytics approach. We first generalize a taxonomy to delineate various tasks in hierarchical time series analysis, derived from literature survey and expert interviews. Based on this taxonomy, we develop ChronoDeck, an interactive system that incorporates a multi-column hierarchical time series visualization for implementing various analytical tasks and distilling insights from the data. ChronoDeck visualizes each aggregation level of hierarchical time series with a combination of coordinated dimensionality reduction and small multiples visualizations, alongside interactions including highlight, align, filter, and select, assisting users in the visualization, comparison, and transformation of hierarchical time series, as well as identifying the entities of interest. The effectiveness of ChronoDeck is demonstrated by case studies on three real-world datasets and expert interviews.

ChronoDeck:层次时间序列分析的可视化分析方法。
分层时间序列数据包括基于分类、地理或物理限制在多个级别上聚合的时间序列集合,对这些数据的分析有助于零售、金融和能源等各个领域的分析师获得有价值的见解并做出明智的决策。然而,现有的分层时间序列数据交互式探索性分析方法在分析不同聚合级别的时间序列和支持除总结和比较等常见分析任务之外的更复杂的分析任务方面存在不足。这些限制促使我们开发一种新的可视化分析方法。我们首先从文献调查和专家访谈中归纳出一种分类法来描述层次时间序列分析中的各种任务。基于这种分类法,我们开发了ChronoDeck,这是一个交互式系统,它结合了多列分层时间序列可视化,用于执行各种分析任务并从数据中提取见解。ChronoDeck通过协调降维和小倍数可视化的组合,将分层时间序列的每个聚合级别可视化,以及包括高亮、对齐、过滤和选择在内的交互,帮助用户对分层时间序列进行可视化、比较和转换,以及识别感兴趣的实体。通过对三个真实世界数据集和专家访谈的案例研究,证明了ChronoDeck的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信