Robust and Efficient Preservation of High-order Continuous Geometric Validity.

IF 6.5
Wei Du, Shibo Liu, Jia-Peng Guo, Ligang Liu, Xiao-Ming Fu
{"title":"Robust and Efficient Preservation of High-order Continuous Geometric Validity.","authors":"Wei Du, Shibo Liu, Jia-Peng Guo, Ligang Liu, Xiao-Ming Fu","doi":"10.1109/TVCG.2025.3603025","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel method to robustly and efficiently compute the maximum allowable step sizes so that the 3D high-order finite elements continuously preserve geometric validity when moving along the given directions with positive step sizes smaller than the computed ones. We transform the problem of finding the maximum allowable step sizes to one of solving roots of cubic polynomials. To use interval arithmetic to avoid numerical issues in cubic equation solving, we completely enumerate the roots of cubic polynomials and apply the interval version of the Newton-Raphson iteration. The effectiveness of our algorithm is demonstrated through extensive testing. Compared to the state-of-the-art method, our algorithm achieves higher efficiency.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3603025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel method to robustly and efficiently compute the maximum allowable step sizes so that the 3D high-order finite elements continuously preserve geometric validity when moving along the given directions with positive step sizes smaller than the computed ones. We transform the problem of finding the maximum allowable step sizes to one of solving roots of cubic polynomials. To use interval arithmetic to avoid numerical issues in cubic equation solving, we completely enumerate the roots of cubic polynomials and apply the interval version of the Newton-Raphson iteration. The effectiveness of our algorithm is demonstrated through extensive testing. Compared to the state-of-the-art method, our algorithm achieves higher efficiency.

高阶连续几何有效性的鲁棒高效保持。
本文提出了一种鲁棒高效地计算最大允许步长的新方法,使三维高阶有限元在给定方向上移动时,即使正步长小于计算的步长,也能持续保持几何有效性。我们将求最大允许步长问题转化为求三次多项式的根问题。为了使用区间算法来避免三次方程求解中的数值问题,我们完全枚举了三次多项式的根,并应用了牛顿-拉夫森迭代的区间版本。通过大量的测试证明了算法的有效性。与目前最先进的方法相比,我们的算法实现了更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信