{"title":"Antidiabetic evaluation of novel thienopyrimidinone-thiazolidinedione hybrids complemented with kinetic and computational investigations","authors":"Pule Seboletswe, Gobind Kumar, Nontobeko Gcabashe, Sanjeev Dhawan, Neha Manhas, Lungisani Khubone, ALmahi Idris, Md. Shahidul Islam, Parvesh Singh","doi":"10.1007/s00044-025-03449-7","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes mellitus (DM) is a complex disease, and its treatment/management frequently requires the use of different drugs with distinct modes of action. Unfortunately, many of the current medications come with an increasing plethora of adverse effects. Consequently, DM poses a significant challenge to the global health system. Carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase have emerged as well-known therapeutic targets for the regulation of postprandial glucose levels. Herein, we report the design and synthesis of 20 novel molecular hybrids encompassing thienopyrimidinone and thiazolidinedione pharmacophores that can inhibit α-amylase and α-glucosidase and prevent oxidative stress. Several derivatives showed more potency than the standard drug acarbose. Compound <b>12q</b> (IC<sub>50</sub> = 38.89 ± 0.50 µM) with alkyl chain length <i>n</i> = 4 exhibited four-fold superior potency to acarbose (IC<sub>50</sub> = 174.40 ± 2.63 µM) against α-amylase, while compound <b>12t</b> (IC<sub>50</sub> = 41.94 ± 4.76 µM) also with alkyl chain length <i>n</i> = 4 exhibited seven-fold higher activity than acarbose (IC<sub>50</sub> = 282.80 ± 1.46 µM) against α-glucosidase. Enzyme kinetic studies further revealed these compounds (<b>12q</b> and <b>12t</b>) to be mixed inhibitors of the respective enzymes and were extensively engaged in interactions with their targets based on molecular docking simulations.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 9","pages":"1929 - 1944"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-025-03449-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03449-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) is a complex disease, and its treatment/management frequently requires the use of different drugs with distinct modes of action. Unfortunately, many of the current medications come with an increasing plethora of adverse effects. Consequently, DM poses a significant challenge to the global health system. Carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase have emerged as well-known therapeutic targets for the regulation of postprandial glucose levels. Herein, we report the design and synthesis of 20 novel molecular hybrids encompassing thienopyrimidinone and thiazolidinedione pharmacophores that can inhibit α-amylase and α-glucosidase and prevent oxidative stress. Several derivatives showed more potency than the standard drug acarbose. Compound 12q (IC50 = 38.89 ± 0.50 µM) with alkyl chain length n = 4 exhibited four-fold superior potency to acarbose (IC50 = 174.40 ± 2.63 µM) against α-amylase, while compound 12t (IC50 = 41.94 ± 4.76 µM) also with alkyl chain length n = 4 exhibited seven-fold higher activity than acarbose (IC50 = 282.80 ± 1.46 µM) against α-glucosidase. Enzyme kinetic studies further revealed these compounds (12q and 12t) to be mixed inhibitors of the respective enzymes and were extensively engaged in interactions with their targets based on molecular docking simulations.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.