Panaln: indexing pangenome for read alignment.

IF 5.4
Lilu Guo, Zongtao He, Hongwei Huo
{"title":"Panaln: indexing pangenome for read alignment.","authors":"Lilu Guo, Zongtao He, Hongwei Huo","doi":"10.1093/bioinformatics/btaf476","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Pangenome indexing is a critical supporting technology in biological sequence analysis such as read alignment applications. The need to accurately identify billions of small sequencing fragments carrying sequencing errors and genomic variants drives the development of scalable and efficient pangenome indexing approach.</p><p><strong>Results: </strong>We propose a new wavelet tree-based approach, called Panaln, for indexing pangenome and introduce a batch computation approach for fast count query over Panaln. We present a simple and effective seeding strategy and develop a pangenome program that uses the seed-and-extend paradigm for read alignment. Experimental results on simulated and real data demonstrate that Panaln uses significantly less space for the compared pangenome methods with generally higher accuracy. We provide a scalable index construction by representing pangenome with a linear model. Additionally, Panaln brings enhanced accuracy compared to the popular single reference methods.</p><p><strong>Availability and implementation: </strong>Package: https://anaconda.org/bioconda/panaln and source code: https://github.com/Lilu-guo/Panaln.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Pangenome indexing is a critical supporting technology in biological sequence analysis such as read alignment applications. The need to accurately identify billions of small sequencing fragments carrying sequencing errors and genomic variants drives the development of scalable and efficient pangenome indexing approach.

Results: We propose a new wavelet tree-based approach, called Panaln, for indexing pangenome and introduce a batch computation approach for fast count query over Panaln. We present a simple and effective seeding strategy and develop a pangenome program that uses the seed-and-extend paradigm for read alignment. Experimental results on simulated and real data demonstrate that Panaln uses significantly less space for the compared pangenome methods with generally higher accuracy. We provide a scalable index construction by representing pangenome with a linear model. Additionally, Panaln brings enhanced accuracy compared to the popular single reference methods.

Availability and implementation: Package: https://anaconda.org/bioconda/panaln and source code: https://github.com/Lilu-guo/Panaln.

Abstract Image

Abstract Image

Abstract Image

泛基因组:索引泛基因组读取比对。
动机:泛基因组索引是生物序列分析的关键支持技术,如读取比对应用。准确识别数十亿携带测序错误和基因组变异的小测序片段的需求推动了可扩展和高效的泛基因组索引方法的发展。结果:我们提出了一种新的基于小波树的泛基因组索引方法Panaln,并引入了一种批量计算方法对Panaln进行快速计数查询。我们提出了一个简单而有效的播种策略,并开发了一个泛基因组程序,该程序使用播种和扩展范式进行读取比对。模拟和真实数据的实验结果表明,与泛基因组方法相比,Panaln方法占用的空间明显更少,而且精度普遍更高。我们通过线性模型表示泛基因组,提供了一个可扩展的索引构建。此外,与流行的单一参考方法相比,Panaln带来了更高的准确性。可用性和实施:软件包:https://anaconda.org/bioconda/panaln和源代码:https://github.com/Lilu-guo/Panaln.Supplementary信息:补充数据可在生物信息学在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信