MVSO-PPIS: a structured objective learning model for protein-protein interaction sites prediction via multi-view graph information integration.

IF 5.4
Shuang Wang, Tianle Ma, Kaiyu Dong, Peifu Han, Xue Li, Junteng Ma, Mao Li, Tao Song
{"title":"MVSO-PPIS: a structured objective learning model for protein-protein interaction sites prediction via multi-view graph information integration.","authors":"Shuang Wang, Tianle Ma, Kaiyu Dong, Peifu Han, Xue Li, Junteng Ma, Mao Li, Tao Song","doi":"10.1093/bioinformatics/btaf470","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Predicting protein-protein interaction (PPI) sites is essential for advancing our understanding of protein interactions, as accurate predictions can significantly reduce experimental costs and time. While considerable progress has been made in identifying binding sites at the level of individual amino acid residues, the prediction accuracy for residue subsequences at transitional boundaries-such as those represented by patterns like singular structures (mutation characteristics of contiguous interacting-residue segments) or edge structures (boundary transitions between interacting/non-interacting residue segments) still requires improvement.</p><p><strong>Results: </strong>we propose a novel PPI site prediction method named MVSO-PPIS. This method integrates two complementary feature extraction modules, a subgraph-based module and an enhanced graph attention module. The extracted features are fused using an attention-based fusion mechanism, producing a composite representation that captures both local protein substructures and global contextual dependencies. MVSO-PPIS is trained to jointly optimize three objectives: overall PPI site prediction accuracy, edge structural consistency, and recognition of unique structural patterns in PPI site sequences. Experimental results on benchmark datasets demonstrate that MVSO-PPIS outperforms existing baseline models in both accuracy and structural interpretability.</p><p><strong>Availability and implementation: </strong>The datasets, source codes, and models of MVSO-PPIS are all available at https://github.com/Edwardblue282/MVSO-PPIS.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Predicting protein-protein interaction (PPI) sites is essential for advancing our understanding of protein interactions, as accurate predictions can significantly reduce experimental costs and time. While considerable progress has been made in identifying binding sites at the level of individual amino acid residues, the prediction accuracy for residue subsequences at transitional boundaries-such as those represented by patterns like singular structures (mutation characteristics of contiguous interacting-residue segments) or edge structures (boundary transitions between interacting/non-interacting residue segments) still requires improvement.

Results: we propose a novel PPI site prediction method named MVSO-PPIS. This method integrates two complementary feature extraction modules, a subgraph-based module and an enhanced graph attention module. The extracted features are fused using an attention-based fusion mechanism, producing a composite representation that captures both local protein substructures and global contextual dependencies. MVSO-PPIS is trained to jointly optimize three objectives: overall PPI site prediction accuracy, edge structural consistency, and recognition of unique structural patterns in PPI site sequences. Experimental results on benchmark datasets demonstrate that MVSO-PPIS outperforms existing baseline models in both accuracy and structural interpretability.

Availability and implementation: The datasets, source codes, and models of MVSO-PPIS are all available at https://github.com/Edwardblue282/MVSO-PPIS.

MVSO-PPIS:基于多视图图信息集成的蛋白质相互作用位点预测的结构化目标学习模型。
动机:预测蛋白质-蛋白质相互作用(PPI)位点对于提高我们对蛋白质相互作用的理解至关重要,因为准确的预测可以显著降低实验成本和时间。虽然在识别单个氨基酸残基水平的结合位点方面已经取得了相当大的进展,但过渡边界上残基子序列的预测精度仍然需要提高,例如那些以奇异结构(连续相互作用残基片段的突变特征)或边缘结构(相互作用/非相互作用残基片段之间的边界过渡)为代表的模式。结果:提出了一种新的PPI位点预测方法MVSO-PPIS。该方法集成了两个互补的特征提取模块,一个基于子图的模块和一个增强的图注意模块。使用基于注意力的融合机制融合提取的特征,产生捕获局部蛋白质亚结构和全局上下文依赖关系的复合表示。MVSO-PPIS的训练是为了共同优化三个目标:PPI位点预测的总体准确性、边缘结构的一致性和对PPI位点序列中独特结构模式的识别。在基准数据集上的实验结果表明,MVSO-PPIS在精度和结构可解释性方面都优于现有的基线模型。可用性和实施:MVSO-PPIS的数据集、源代码和模型均可在https://github.com/Edwardblue282/MVSO-PPIS.Supplementary上获得:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信