CANA v1.0.0: efficient quantification of canalization in automata networks.

IF 5.4
Austin M Marcus, Jordan Rozum, Herbert Sizek, Luis M Rocha
{"title":"CANA v1.0.0: efficient quantification of canalization in automata networks.","authors":"Austin M Marcus, Jordan Rozum, Herbert Sizek, Luis M Rocha","doi":"10.1093/bioinformatics/btaf461","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The biomolecular networks underpinning cell function exhibit canalization, or the buffering of fluctuations required to function in a noisy environment. We present a new major release of CANA, v1.0.0, an open-source Python package for understanding canalization in automata network models, discrete dynamical systems in which activation of biomolecular entities (e.g. transcription of genes) is modeled as the activity of coupled automata. One understudied putative mechanism for canalization is the functional equivalence of biomolecular regulators (e.g. among the transcription factors for a gene). We study this mechanism using the theory of symmetry in discrete functions. We present a new exact method, schematodes, for finding maximal symmetry groups among the inputs to discrete functions, and integrate it into CANA. The schematodes method substantially outperforms the inexact method of previous CANA versions both in speed and accuracy. We apply CANA v1.0.0 to study symmetry in 74 experimentally supported automata network models from the Cell Collective (CC) repository. The symmetry distribution is significantly different in the CC than in random automata with the same in-degree (connectivity) and bias (average output) (Kolmogorov-Smirnov test, P ≪ .001). Its spread is much wider than in a null model (IQR 0.31 versus IQR 0.20 with equal medians), demonstrating that the CC is enriched in functions with extreme symmetry or asymmetry.</p><p><strong>Availability and implementation: </strong>CANA source is on https://github.com/CASCI-lab/CANA and is installable via pip install cana. Source for schematodes is on https://github.com/CASCI-lab/schematodes. Analysis scripts are on https://github.com/CASCI-lab/symmetryInCellCollective.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The biomolecular networks underpinning cell function exhibit canalization, or the buffering of fluctuations required to function in a noisy environment. We present a new major release of CANA, v1.0.0, an open-source Python package for understanding canalization in automata network models, discrete dynamical systems in which activation of biomolecular entities (e.g. transcription of genes) is modeled as the activity of coupled automata. One understudied putative mechanism for canalization is the functional equivalence of biomolecular regulators (e.g. among the transcription factors for a gene). We study this mechanism using the theory of symmetry in discrete functions. We present a new exact method, schematodes, for finding maximal symmetry groups among the inputs to discrete functions, and integrate it into CANA. The schematodes method substantially outperforms the inexact method of previous CANA versions both in speed and accuracy. We apply CANA v1.0.0 to study symmetry in 74 experimentally supported automata network models from the Cell Collective (CC) repository. The symmetry distribution is significantly different in the CC than in random automata with the same in-degree (connectivity) and bias (average output) (Kolmogorov-Smirnov test, P ≪ .001). Its spread is much wider than in a null model (IQR 0.31 versus IQR 0.20 with equal medians), demonstrating that the CC is enriched in functions with extreme symmetry or asymmetry.

Availability and implementation: CANA source is on https://github.com/CASCI-lab/CANA and is installable via pip install cana. Source for schematodes is on https://github.com/CASCI-lab/schematodes. Analysis scripts are on https://github.com/CASCI-lab/symmetryInCellCollective.

CANA v1.0.0:自动机网络中渠化的有效量化。
摘要:支撑细胞功能的生物分子网络表现出通道化,或在嘈杂环境中发挥作用所需的波动缓冲。我们介绍了CANA的一个新的主要版本,v1.0.0,这是一个开源的Python包,用于理解自动机网络模型中的管道化,在自动机网络模型中,生物分子实体的激活(例如,基因的转录)被建模为耦合自动机的活性。一个尚未得到充分研究的推测的管道化机制是生物分子调节剂(例如,在基因的转录因子之间)的功能等效。我们利用离散函数的对称性理论来研究这一机制。我们提出了一种新的精确方法——schematodes,用于寻找离散函数输入间的极大对称群,并将其集成到CANA中。schematodes方法在速度和精度上都大大优于以前CANA版本的不精确方法。我们使用CANA v1.0.0来研究来自Cell Collective (CC)存储库的74个实验支持的自动机网络模型的对称性。具有相同关联度(连通性)和偏置(平均输出)的随机自动机相比,CC的对称性分布明显不同(Kolmogorov-Smirnov试验,p≪0.001)。它的分布比零模型要宽得多(IQR 0.31 vs IQR 0.20,中位数相等),表明CC丰富了极端对称或不对称的函数。可用性和实现:CANA源代码在https://github.com/CASCI-lab/CANA上,可以通过pip install CANA安装。schematodes的来源在https://github.com/CASCI-lab/schematodes。分析脚本可在https://github.com/CASCI-lab/symmetryInCellCollective.Supplementary上获取信息;补充文本可在Bioinformatics在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信