Accurate identification of communication between multiple interacting neural populations.

ArXiv Pub Date : 2025-10-03
Belle Liu, Jacob Sacks, Matthew D Golub
{"title":"Accurate identification of communication between multiple interacting neural populations.","authors":"Belle Liu, Jacob Sacks, Matthew D Golub","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.

准确识别多个相互作用的神经群体之间的通信。
神经记录技术现在可以同时记录许多大脑区域的人口活动,从而推动了大脑区域之间通信的数据驱动模型的发展。然而,现有的模型很难理清影响记录的神经种群的来源,从而导致对区域间交流的不准确描述。在这里,我们通过动态系统引入多区域潜在因素分析(MR-LFADS),这是一种顺序变分自编码器,旨在分离区域间通信,未观察区域的输入和局部神经种群动态。我们表明,MR-LFADS在识别跨数十个任务训练的多区域网络模拟的通信方面优于现有的方法。当应用于大规模电生理学时,MR-LFADS可以预测模型拟合过程中产生的电路扰动对全脑的影响。这些对合成和真实神经数据的验证使MR-LFADS成为发现全脑信息处理原理的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信