TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model.

Meilong Xu, Saumya Gupta, Xiaoling Hu, Chen Li, Shahira Abousamra, Dimitris Samaras, Prateek Prasanna, Chao Chen
{"title":"<i>TopoCellGen</i>: Generating Histopathology Cell Topology with a Diffusion Model.","authors":"Meilong Xu, Saumya Gupta, Xiaoling Hu, Chen Li, Shahira Abousamra, Dimitris Samaras, Prateek Prasanna, Chao Chen","doi":"10.1109/cvpr52734.2025.01954","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately modeling multi-class cell topology is crucial in digital pathology, as it provides critical insights into tissue structure and pathology. The synthetic generation of cell topology enables realistic simulations of complex tissue environments, enhances downstream tasks by augmenting training data, aligns more closely with pathologists' domain knowledge, and offers new opportunities for controlling and generalizing the tumor microenvironment. In this paper, we propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies. Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks such as cell detection and classification. To assess the topological fidelity of generated layouts, we introduce a new metric, Topological Fréchet Distance (TopoFD), which overcomes the limitations of traditional metrics like FID in evaluating topological structure. Experimental results demonstrate the effectiveness of our approach in generating multi-class cell layouts that capture intricate topological relationships. Code is available at https://github.com/Melon-Xu/TopoCellGen.</p>","PeriodicalId":74560,"journal":{"name":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"2025 ","pages":"20979-20989"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr52734.2025.01954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately modeling multi-class cell topology is crucial in digital pathology, as it provides critical insights into tissue structure and pathology. The synthetic generation of cell topology enables realistic simulations of complex tissue environments, enhances downstream tasks by augmenting training data, aligns more closely with pathologists' domain knowledge, and offers new opportunities for controlling and generalizing the tumor microenvironment. In this paper, we propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies. Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks such as cell detection and classification. To assess the topological fidelity of generated layouts, we introduce a new metric, Topological Fréchet Distance (TopoFD), which overcomes the limitations of traditional metrics like FID in evaluating topological structure. Experimental results demonstrate the effectiveness of our approach in generating multi-class cell layouts that capture intricate topological relationships. Code is available at https://github.com/Melon-Xu/TopoCellGen.

TopoCellGen:用扩散模型生成组织病理学细胞拓扑。
准确地建模多类细胞拓扑在数字病理学中是至关重要的,因为它提供了对组织结构和病理的关键见解。细胞拓扑的合成生成能够实现复杂组织环境的真实模拟,通过增加训练数据增强下游任务,更紧密地与病理学家的领域知识保持一致,并为控制和推广肿瘤微环境提供了新的机会。在本文中,我们提出了一种新的方法,将拓扑约束集成到扩散模型中,以改进现实的、上下文准确的细胞拓扑的生成。我们的方法改进了细胞分布和相互作用的模拟,提高了下游任务(如细胞检测和分类)结果的精度和可解释性。为了评估生成的布局的拓扑保真度,我们引入了一种新的度量拓扑结构距离(TopoFD),它克服了FID等传统度量在评估拓扑结构时的局限性。实验结果证明了我们的方法在生成捕获复杂拓扑关系的多类单元布局方面的有效性。代码可从https://github.com/Melon-Xu/TopoCellGen获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
43.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信