Supporters and Skeptics: LLM-based Analysis of Engagement with Mental Health (Mis)Information Content on Video-sharing Platforms.

Viet Cuong Nguyen, Mini Jain, Abhijat Chauhan, Heather Jaime Soled, Santiago Alvarez Lesmes, Zihang Li, Michael L Birnbaum, Sunny X Tang, Srijan Kumar, Munmun De Choudhury
{"title":"Supporters and Skeptics: LLM-based Analysis of Engagement with Mental Health (Mis)Information Content on Video-sharing Platforms.","authors":"Viet Cuong Nguyen, Mini Jain, Abhijat Chauhan, Heather Jaime Soled, Santiago Alvarez Lesmes, Zihang Li, Michael L Birnbaum, Sunny X Tang, Srijan Kumar, Munmun De Choudhury","doi":"10.1609/icwsm.v19i1.35875","DOIUrl":null,"url":null,"abstract":"<p><p>Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the \"epidemic\" of mental health misinformation online.</p>","PeriodicalId":74525,"journal":{"name":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","volume":"19 ","pages":"1329-1345"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v19i1.35875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the "epidemic" of mental health misinformation online.

支持者和怀疑者:基于法学硕士的视频分享平台上心理健康信息内容参与分析。
美国超过五分之一的成年人患有精神疾病。面对精神卫生专业人员和线下资源的短缺,在线短视频内容已经发展成为传播精神卫生帮助和资源的重要渠道。然而,内容创建和访问的便利性也助长了错误信息的传播,给准确的诊断和治疗带来了风险。发现和了解对此类内容的参与对于减轻其对公众健康的有害影响至关重要。我们使用YouTube Shorts和Bitchute作为研究网站,对这一现象进行了首次定量研究。我们使用专家驱动的注释模式,贡献了MentalMisinfo,这是一个新的标记心理健康错误信息(MHMisinfo)数据集,该数据集包含739个视频(639个来自Youtube, 100个来自Bitchute)和135372条评论。我们首先发现使用大型语言模型(llm)的少镜头上下文学习在检测MHMisinfo视频方面是有效的。接下来,我们发现了观众如何通过两个视频分享平台上的评论与MHMisinfo视频互动的独特且可能令人担忧的语言模式。在这两个平台上,评论可能会加剧普遍存在的耻辱感,因为一些群体对MHMisinfo表现出更高的敏感性和一致性。我们讨论了技术和公共卫生驱动的适应性解决方案,以解决在线心理健康错误信息的“流行病”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信