Data-Driven Superstabilization of Linear Systems under Quantization.

Jared Miller, Jian Zheng, Mario Sznaier, Chris Hixenbaugh
{"title":"Data-Driven Superstabilization of Linear Systems under Quantization.","authors":"Jared Miller, Jian Zheng, Mario Sznaier, Chris Hixenbaugh","doi":"10.23919/acc60939.2024.10644558","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on the stabilization and regulation of linear systems affected by quantization in state-transition data and actuated input. The observed data are composed of tuples of current state, input, and the next state's interval ranges based on sensor quantization. Using an established characterization of input-logarithmically-quantized stabilization based on robustness to sector-bounded uncertainty, we formulate a nonconservative infinite-dimensional linear program that enforces superstabilization of all possible consistent systems under assumed priors. We solve this problem by posing a pair of exponentially-scaling linear programs, and demonstrate the success of our method on example quantized systems.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"1 ","pages":"1146-1151"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc60939.2024.10644558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the stabilization and regulation of linear systems affected by quantization in state-transition data and actuated input. The observed data are composed of tuples of current state, input, and the next state's interval ranges based on sensor quantization. Using an established characterization of input-logarithmically-quantized stabilization based on robustness to sector-bounded uncertainty, we formulate a nonconservative infinite-dimensional linear program that enforces superstabilization of all possible consistent systems under assumed priors. We solve this problem by posing a pair of exponentially-scaling linear programs, and demonstrate the success of our method on example quantized systems.

量化下线性系统的数据驱动超镇定。
本文主要研究受状态转移数据和驱动输入量化影响的线性系统的镇定与调节问题。观测数据由基于传感器量化的当前状态、输入和下一状态间隔范围元组组成。利用基于对扇区有界不确定性的鲁棒性的输入对数量化镇定的既定特征,我们制定了一个非保守的无限维线性规划,该规划在假设的先验条件下强制所有可能的一致系统的超镇定。我们通过提出一对指数尺度线性规划来解决这个问题,并在实例量化系统上证明了我们的方法的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信