{"title":"A digital twin that interprets and refines chemical mechanisms","authors":"","doi":"10.1038/s43588-025-00859-w","DOIUrl":null,"url":null,"abstract":"An integrated platform, Digital Twin for Chemical Science (DTCS), is developed to connect first-principles theory with spectroscopic measurements through a bidirectional feedback loop. By predicting and refining chemical reaction mechanisms before, during and after experiments, DTCS enables the interpretation of spectra and supports real-time decision-making in chemical characterization.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 9","pages":"713-714"},"PeriodicalIF":18.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00859-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An integrated platform, Digital Twin for Chemical Science (DTCS), is developed to connect first-principles theory with spectroscopic measurements through a bidirectional feedback loop. By predicting and refining chemical reaction mechanisms before, during and after experiments, DTCS enables the interpretation of spectra and supports real-time decision-making in chemical characterization.