SciToolAgent: a knowledge-graph-driven scientific agent for multitool integration.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Keyan Ding, Jing Yu, Junjie Huang, Yuchen Yang, Qiang Zhang, Huajun Chen
{"title":"SciToolAgent: a knowledge-graph-driven scientific agent for multitool integration.","authors":"Keyan Ding, Jing Yu, Junjie Huang, Yuchen Yang, Qiang Zhang, Huajun Chen","doi":"10.1038/s43588-025-00849-y","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific research increasingly relies on specialized computational tools, yet effectively utilizing these tools requires substantial domain expertise. While large language models show promise in tool automation, they struggle to seamlessly integrate and orchestrate multiple tools for complex scientific workflows. Here we present SciToolAgent, a large language model-powered agent that automates hundreds of scientific tools across biology, chemistry and materials science. At its core, SciToolAgent leverages a scientific tool knowledge graph that enables intelligent tool selection and execution through graph-based retrieval-augmented generation. The agent also incorporates a comprehensive safety-checking module to ensure responsible and ethical tool usage. Extensive evaluations on a curated benchmark demonstrate that SciToolAgent outperforms existing approaches. Case studies in protein engineering, chemical reactivity prediction, chemical synthesis and metal-organic framework screening further demonstrate SciToolAgent's capability to automate complex scientific workflows, making advanced research tools accessible to both experts and nonexperts.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00849-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific research increasingly relies on specialized computational tools, yet effectively utilizing these tools requires substantial domain expertise. While large language models show promise in tool automation, they struggle to seamlessly integrate and orchestrate multiple tools for complex scientific workflows. Here we present SciToolAgent, a large language model-powered agent that automates hundreds of scientific tools across biology, chemistry and materials science. At its core, SciToolAgent leverages a scientific tool knowledge graph that enables intelligent tool selection and execution through graph-based retrieval-augmented generation. The agent also incorporates a comprehensive safety-checking module to ensure responsible and ethical tool usage. Extensive evaluations on a curated benchmark demonstrate that SciToolAgent outperforms existing approaches. Case studies in protein engineering, chemical reactivity prediction, chemical synthesis and metal-organic framework screening further demonstrate SciToolAgent's capability to automate complex scientific workflows, making advanced research tools accessible to both experts and nonexperts.

SciToolAgent:知识图驱动的科学代理,用于多工具集成。
科学研究越来越依赖于专门的计算工具,然而有效地利用这些工具需要大量的领域专业知识。虽然大型语言模型显示了工具自动化的前景,但它们难以无缝地集成和编排用于复杂科学工作流的多个工具。在这里,我们介绍了SciToolAgent,这是一个大型语言模型驱动的代理,可以自动化生物、化学和材料科学领域的数百种科学工具。SciToolAgent的核心是利用科学的工具知识图,通过基于图的检索增强生成实现智能工具选择和执行。该代理还包含一个全面的安全检查模块,以确保负责任和道德的工具使用。对精心设计的基准进行的广泛评估表明,SciToolAgent优于现有的方法。在蛋白质工程、化学反应性预测、化学合成和金属有机框架筛选方面的案例研究进一步证明了SciToolAgent自动化复杂科学工作流程的能力,使专家和非专家都可以使用先进的研究工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信