Strong and weak Head-related transfer functions: The eHRTF analytical framework.

IF 1.4 Q3 ACOUSTICS
Michele Geronazzo
{"title":"Strong and weak Head-related transfer functions: The eHRTF analytical framework.","authors":"Michele Geronazzo","doi":"10.1121/10.0038961","DOIUrl":null,"url":null,"abstract":"<p><p>This article introduces an analytical framework for modeling head-related transfer functions (HRTFs) from a listener-centered perspective. The distinction between strong (or general) HRTFs, aiming for idealized physical acoustic fidelity, and weak (or narrow) HRTFs, prioritizing perceptual adequacy in task-specific contexts, frames the contrast in multiple contrasting definitions and scientific methodologies by drawing inspiration from the debate in artificial intelligence. The proposed formalism adopts a Bayesian structure that models HRTFs through a state-space formulation capturing anatomical, contextual, experiential, and task-related factors: the eHRTF. The \"e\" emphasizes the egocentric perspective, transforming HRTFs from static measurements into mutable auditory representations continuously updated through the listener's feedback. Satisfaction regions are defined in probabilistic terms and characterize how different classes of HRTFs, i.e., individual, generic, super, and personalized, meet perceptual requirements under varying tasks and their complexity.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 8","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0038961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an analytical framework for modeling head-related transfer functions (HRTFs) from a listener-centered perspective. The distinction between strong (or general) HRTFs, aiming for idealized physical acoustic fidelity, and weak (or narrow) HRTFs, prioritizing perceptual adequacy in task-specific contexts, frames the contrast in multiple contrasting definitions and scientific methodologies by drawing inspiration from the debate in artificial intelligence. The proposed formalism adopts a Bayesian structure that models HRTFs through a state-space formulation capturing anatomical, contextual, experiential, and task-related factors: the eHRTF. The "e" emphasizes the egocentric perspective, transforming HRTFs from static measurements into mutable auditory representations continuously updated through the listener's feedback. Satisfaction regions are defined in probabilistic terms and characterize how different classes of HRTFs, i.e., individual, generic, super, and personalized, meet perceptual requirements under varying tasks and their complexity.

强和弱头部相关传递函数:eHRTF分析框架。
本文从以听众为中心的角度,介绍了一个头部相关传递函数(hrtf)建模的分析框架。旨在理想化物理声学保真度的强(或一般)hrtf与在特定任务环境中优先考虑感知充分性的弱(或窄)hrtf之间的区别,通过从人工智能的辩论中汲取灵感,在多种对比定义和科学方法中形成了对比。提出的形式化方法采用贝叶斯结构,该结构通过捕获解剖、上下文、经验和任务相关因素的状态空间公式来建模hrtf: eHRTF。“e”强调以自我为中心的视角,将hrtf从静态测量转变为通过听众的反馈不断更新的可变听觉表征。满意度区域是用概率术语定义的,它描述了不同类别的hrtf,即个体、通用、超级和个性化,如何满足不同任务及其复杂性下的感知需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信