AI-Driven Tacrolimus Dosing in Transplant Care: Cohort Study.

IF 2
JMIR AI Pub Date : 2025-09-02 DOI:10.2196/67302
Mingjia Huo, Sean Perez, Linda Awdishu, Janice S Kerr, Pengtao Xie, Adnan Khan, Kristin Mekeel, Shamim Nemati
{"title":"AI-Driven Tacrolimus Dosing in Transplant Care: Cohort Study.","authors":"Mingjia Huo, Sean Perez, Linda Awdishu, Janice S Kerr, Pengtao Xie, Adnan Khan, Kristin Mekeel, Shamim Nemati","doi":"10.2196/67302","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tacrolimus forms the backbone of immunosuppressive therapy in solid organ transplantation, requiring precise dosing due to its narrow therapeutic range. Maintaining therapeutic tacrolimus levels in the postoperative period is challenging due to diverse patient characteristics, donor organ factors, drug interactions, and evolving perioperative physiology.</p><p><strong>Objective: </strong>The aim of this study is to design a machine learning model to predict the next-day tacrolimus trough concentrations (C0) and guide dosing to prevent persistent under- or overdosing.</p><p><strong>Methods: </strong>We used retrospective data from 1597 adult recipients of kidney and liver transplants at UC San Diego Health to develop a long short-term memory (LSTM) model to predict next-day tacrolimus C0 in an inpatient setting. Predictors included transplant type, demographics, comorbidities, vital signs, laboratory parameters, ordered diet, and medications. Permutation feature importance was evaluated for the model. We further implemented a classification task to evaluate the model's ability to identify underdosing, therapeutic dosing, and overdosing. Finally, we generated next-day dose recommendations that would achieve tacrolimus C0 within the target ranges.</p><p><strong>Results: </strong>The LSTM model provided a mean absolute error of 1.880 ng/mL when predicting next-day tacrolimus C0. Top predictive features included the recent tacrolimus C0, tacrolimus doses, transplant organ type, diet, and interactive drugs. When predicting underdosing, therapeutic dosing, and overdosing using a 3-class classification task, the model achieved a microaverage F1-score of 0.653. For dose recommendations, the best clinical outcomes were achieved when the actual total daily dose closely aligned with the model's recommended dose (within 3 mg).</p><p><strong>Conclusions: </strong>Ours is one of the largest studies to apply artificial intelligence to tacrolimus dosing, and our LSTM model effectively predicts tacrolimus C0 and could potentially guide accurate dose recommendations. Further prospective studies are needed to evaluate the model's performance in real-world dose adjustments.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"4 ","pages":"e67302"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tacrolimus forms the backbone of immunosuppressive therapy in solid organ transplantation, requiring precise dosing due to its narrow therapeutic range. Maintaining therapeutic tacrolimus levels in the postoperative period is challenging due to diverse patient characteristics, donor organ factors, drug interactions, and evolving perioperative physiology.

Objective: The aim of this study is to design a machine learning model to predict the next-day tacrolimus trough concentrations (C0) and guide dosing to prevent persistent under- or overdosing.

Methods: We used retrospective data from 1597 adult recipients of kidney and liver transplants at UC San Diego Health to develop a long short-term memory (LSTM) model to predict next-day tacrolimus C0 in an inpatient setting. Predictors included transplant type, demographics, comorbidities, vital signs, laboratory parameters, ordered diet, and medications. Permutation feature importance was evaluated for the model. We further implemented a classification task to evaluate the model's ability to identify underdosing, therapeutic dosing, and overdosing. Finally, we generated next-day dose recommendations that would achieve tacrolimus C0 within the target ranges.

Results: The LSTM model provided a mean absolute error of 1.880 ng/mL when predicting next-day tacrolimus C0. Top predictive features included the recent tacrolimus C0, tacrolimus doses, transplant organ type, diet, and interactive drugs. When predicting underdosing, therapeutic dosing, and overdosing using a 3-class classification task, the model achieved a microaverage F1-score of 0.653. For dose recommendations, the best clinical outcomes were achieved when the actual total daily dose closely aligned with the model's recommended dose (within 3 mg).

Conclusions: Ours is one of the largest studies to apply artificial intelligence to tacrolimus dosing, and our LSTM model effectively predicts tacrolimus C0 and could potentially guide accurate dose recommendations. Further prospective studies are needed to evaluate the model's performance in real-world dose adjustments.

Abstract Image

Abstract Image

Abstract Image

移植护理中人工智能驱动的他克莫司剂量:队列研究。
背景:他克莫司是实体器官移植中免疫抑制治疗的支柱,由于其治疗范围窄,需要精确的剂量。由于患者特点、供体器官因素、药物相互作用和围手术期生理变化的不同,术后维持他克莫司治疗水平具有挑战性。目的:设计一个机器学习模型来预测第二天他克莫司谷浓度(C0),并指导给药,以防止持续给药不足或过量。方法:我们使用来自加州大学圣地亚哥分校健康中心1597名成年肾脏和肝脏移植接受者的回顾性数据来开发一个长短期记忆(LSTM)模型来预测住院患者第二天服用他克莫司C0的情况。预测因素包括移植类型、人口统计学、合并症、生命体征、实验室参数、有序饮食和药物。对模型进行排列特征重要性评估。我们进一步实施了一个分类任务来评估模型识别剂量不足、治疗剂量和过量的能力。最后,我们提出了第二天的剂量建议,使他克莫司C0达到目标范围。结果:LSTM模型预测第二天他克莫司C0的平均绝对误差为1.880 ng/mL。最重要的预测特征包括最近的他克莫司C0、他克莫司剂量、移植器官类型、饮食和相互作用药物。在使用3类分类任务预测剂量不足、治疗剂量和过量剂量时,该模型的微平均f1得分为0.653。对于推荐剂量,当实际每日总剂量与模型推荐剂量(在3mg以内)密切一致时,达到最佳临床结果。结论:我们的研究是将人工智能应用于他克莫司给药的最大研究之一,我们的LSTM模型可以有效地预测他克莫司C0,并可能指导准确的剂量推荐。需要进一步的前瞻性研究来评估该模型在实际剂量调整中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信