{"title":"Optimization of robotic liquid handling as a capacitated vehicle routing problem","authors":"Guangqi Wu, Runzhong Wang and Connor. W. Coley","doi":"10.1039/D5DD00233H","DOIUrl":null,"url":null,"abstract":"<p >We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (<em>e.g.</em>, well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2593-2601"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00233h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (e.g., well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.