An explainable machine learning pipeline for prediction of antimicrobial resistance in Pseudomonas aeruginosa.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-22 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf190
Aakriti Jain, Govinda Rao Dabburu, Bishal Samanta, Neelja Singhal, Manish Kumar
{"title":"An explainable machine learning pipeline for prediction of antimicrobial resistance in <i>Pseudomonas aeruginosa</i>.","authors":"Aakriti Jain, Govinda Rao Dabburu, Bishal Samanta, Neelja Singhal, Manish Kumar","doi":"10.1093/bioadv/vbaf190","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Prediction of antimicrobial resistance in <i>Pseudomonas aeruginosa</i> using machine learning and genomic sequences holds the potential to serve as comparable alternatives to laboratory based detection if not better. Additionally, model interpretability can further enhance the potential of these models paving way for their reproducibility.</p><p><strong>Results: </strong>We have developed a machine-learning based 2-tier pipeline to predict resistance phenotype in <i>P. aeruginosa</i> using only genomic sequences as input in the form of k-mers. Our Decision Tree Model yields an accuracy of 79% and area under the receiver operating characteristic curve of 0.77 with a 70% specificity and 84% sensitivity. We have interpreted the model's predictions using explainable AI as an attempt to bridge the gap between computational prediction and biological insight. Through these interpretations we have gathered antibiotic specific k-mer signatures pushing phenotype towards resistance.</p><p><strong>Availability and implementation: </strong>The curated dataset and related codes are available on request.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf190"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Prediction of antimicrobial resistance in Pseudomonas aeruginosa using machine learning and genomic sequences holds the potential to serve as comparable alternatives to laboratory based detection if not better. Additionally, model interpretability can further enhance the potential of these models paving way for their reproducibility.

Results: We have developed a machine-learning based 2-tier pipeline to predict resistance phenotype in P. aeruginosa using only genomic sequences as input in the form of k-mers. Our Decision Tree Model yields an accuracy of 79% and area under the receiver operating characteristic curve of 0.77 with a 70% specificity and 84% sensitivity. We have interpreted the model's predictions using explainable AI as an attempt to bridge the gap between computational prediction and biological insight. Through these interpretations we have gathered antibiotic specific k-mer signatures pushing phenotype towards resistance.

Availability and implementation: The curated dataset and related codes are available on request.

Abstract Image

Abstract Image

Abstract Image

预测铜绿假单胞菌抗菌素耐药性的可解释的机器学习管道。
动机:利用机器学习和基因组序列预测铜绿假单胞菌的抗菌素耐药性,即使不是更好,也有可能作为实验室检测的可比替代方案。此外,模型可解释性可以进一步增强这些模型的潜力,为其再现性铺平道路。结果:我们开发了一种基于机器学习的2层管道,仅使用基因组序列作为k-mers形式的输入来预测铜绿假单胞菌的耐药表型。我们的决策树模型的准确度为79%,接受者工作特征曲线下的面积为0.77,特异性为70%,敏感性为84%。我们使用可解释的人工智能来解释模型的预测,试图弥合计算预测和生物洞察力之间的差距。通过这些解释,我们收集了抗生素特异性k-mer特征,将表型推向耐药性。可用性和实施:经整理的数据集和相关代码可应要求提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信