Qianzi Che, Yuanming Leng, Wei Yang, Xihao Cao, Zhongxia Wang, Lizheng Liu, Feibiao Xie, Ruilin Wang
{"title":"Tongue Image-Based Diagnosis of Acute Respiratory Tract Infection Using Machine Learning: Algorithm Development and Validation.","authors":"Qianzi Che, Yuanming Leng, Wei Yang, Xihao Cao, Zhongxia Wang, Lizheng Liu, Feibiao Xie, Ruilin Wang","doi":"10.2196/74102","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human adenoviruses (HAdVs) and COVID-19 are prominent respiratory pathogens with overlapping clinical presentations, including fever, cough, and sore throat, posing significant diagnostic challenges without viral testing. Tongue image diagnosis, a noninvasive method used in traditional Chinese medicine, has shown correlations with specific respiratory infections, but its application remains underexplored in differentiating HAdVs from COVID-19. Advances in artificial intelligence offer opportunities to enhance tongue image analysis for more objective and accurate diagnostics.</p><p><strong>Objective: </strong>This study aims to develop and validate artificial intelligence-based predictive models using tongue image features to differentiate COVID-19 from adenoviral respiratory infections, thereby improving diagnostic accuracy and integrating traditional diagnostic methods with modern medical technologies.</p><p><strong>Methods: </strong>A total of 280 tongue images were collected from 58 patients with COVID-19, 84 patients with HAdVs, and 30 healthy controls. Deep learning methods were applied to extract tongue features, including color, coating, fissures, papillae, tooth marks, and granules. Four machine learning classifiers, logistic regression, random forest, gradient boosting model, and extreme gradient boosting, were developed to differentiate COVID-19 and HAdV infections. The key features identified by the machine learning algorithms were further visualized in a 2D space.</p><p><strong>Results: </strong>Nine tongue features showed significant differences among groups (all P<.05), including coating color (red, green, and blue), presence of tooth marks, coating crack ratio, moisture level, texture directionality, roughness, and contrast. The extreme gradient boosting model achieved the highest diagnostic performance with an area under the receiver operating characteristic curve of 0.84 (95% CI 0.78-0.90) and an area under the precision-recall curve above 0.70. Shapley additive explanations analysis indicated tongue color, moisture, and texture as key contributors.</p><p><strong>Conclusions: </strong>Our findings demonstrate the potential of tongue diagnosis in identifying pathogens responsible for acute respiratory tract infections at the time of admission. This approach holds significant clinical implications, offering the potential to reduce clinician workloads while improving diagnostic accuracy and the overall quality of medical care.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e74102"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/74102","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human adenoviruses (HAdVs) and COVID-19 are prominent respiratory pathogens with overlapping clinical presentations, including fever, cough, and sore throat, posing significant diagnostic challenges without viral testing. Tongue image diagnosis, a noninvasive method used in traditional Chinese medicine, has shown correlations with specific respiratory infections, but its application remains underexplored in differentiating HAdVs from COVID-19. Advances in artificial intelligence offer opportunities to enhance tongue image analysis for more objective and accurate diagnostics.
Objective: This study aims to develop and validate artificial intelligence-based predictive models using tongue image features to differentiate COVID-19 from adenoviral respiratory infections, thereby improving diagnostic accuracy and integrating traditional diagnostic methods with modern medical technologies.
Methods: A total of 280 tongue images were collected from 58 patients with COVID-19, 84 patients with HAdVs, and 30 healthy controls. Deep learning methods were applied to extract tongue features, including color, coating, fissures, papillae, tooth marks, and granules. Four machine learning classifiers, logistic regression, random forest, gradient boosting model, and extreme gradient boosting, were developed to differentiate COVID-19 and HAdV infections. The key features identified by the machine learning algorithms were further visualized in a 2D space.
Results: Nine tongue features showed significant differences among groups (all P<.05), including coating color (red, green, and blue), presence of tooth marks, coating crack ratio, moisture level, texture directionality, roughness, and contrast. The extreme gradient boosting model achieved the highest diagnostic performance with an area under the receiver operating characteristic curve of 0.84 (95% CI 0.78-0.90) and an area under the precision-recall curve above 0.70. Shapley additive explanations analysis indicated tongue color, moisture, and texture as key contributors.
Conclusions: Our findings demonstrate the potential of tongue diagnosis in identifying pathogens responsible for acute respiratory tract infections at the time of admission. This approach holds significant clinical implications, offering the potential to reduce clinician workloads while improving diagnostic accuracy and the overall quality of medical care.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.