{"title":"Markovian Timescales of Intramolecular Disulfide Pairing in Cyclotides.","authors":"Jayapriya Venkatesan, Durba Roy","doi":"10.1002/prot.70041","DOIUrl":null,"url":null,"abstract":"<p><p>Kinetics of intramolecular disulphide pairing in a six-cysteine containing plant toxin peptide cycloviolacin O1 (CyO1) having a cyclic backbone and a cyclic cystine knot (CCK) is studied using a Hidden Markov Model (HMM) created from molecular dynamics simulation trajectories. Starting from a fully reduced form of CyO1 (peptide-D), the kinetic model is created to track the peptide's evolution to a native-like state (peptide-N) where all three correct pairs of S-S linkages are most likely to be observed. The structural evolution and fluctuation of peptide-D through many partially folded S-S intermediates and the associated propensity, along with the timescale of formation of a single or simultaneously two or three S-S pairs, is studied using this Markov chain. The phenomenon of intramolecular S-S pairing, as observed in proteins and peptides, is fast, with a computed rate constant of ~10<sup>6</sup> s<sup>-1</sup> in line with experimental observations in the bacterial disulphide bond redox protein DsbD. Rate networks and transition path theory analysis are used to find the most probable pathway for peptide-D to evolve into peptide-N.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kinetics of intramolecular disulphide pairing in a six-cysteine containing plant toxin peptide cycloviolacin O1 (CyO1) having a cyclic backbone and a cyclic cystine knot (CCK) is studied using a Hidden Markov Model (HMM) created from molecular dynamics simulation trajectories. Starting from a fully reduced form of CyO1 (peptide-D), the kinetic model is created to track the peptide's evolution to a native-like state (peptide-N) where all three correct pairs of S-S linkages are most likely to be observed. The structural evolution and fluctuation of peptide-D through many partially folded S-S intermediates and the associated propensity, along with the timescale of formation of a single or simultaneously two or three S-S pairs, is studied using this Markov chain. The phenomenon of intramolecular S-S pairing, as observed in proteins and peptides, is fast, with a computed rate constant of ~106 s-1 in line with experimental observations in the bacterial disulphide bond redox protein DsbD. Rate networks and transition path theory analysis are used to find the most probable pathway for peptide-D to evolve into peptide-N.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.