A novel longitudinal rank-sum test for multiple primary endpoints in clinical trials: Applications to neurodegenerative disorders.

IF 1.3 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaoming Xu, Dhrubajyoti Ghosh, Sheng Luo
{"title":"A novel longitudinal rank-sum test for multiple primary endpoints in clinical trials: Applications to neurodegenerative disorders.","authors":"Xiaoming Xu, Dhrubajyoti Ghosh, Sheng Luo","doi":"10.1080/19466315.2025.2458018","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders such as Alzheimer's disease (AD) present a significant global health challenge, characterized by cognitive decline, functional impairment, and other debilitating effects. Current AD clinical trials often assess multiple longitudinal primary endpoints to comprehensively evaluate treatment efficacy. Traditional methods, however, may fail to capture global treatment effects, require larger sample sizes due to multiplicity adjustments, and may not fully utilize the available longitudinal data. To address these limitations, we introduce the Longitudinal Rank Sum Test (LRST), a novel nonparametric rank-based omnibus test statistic. The LRST enables a comprehensive assessment of treatment efficacy across multiple endpoints and time points without the need for multiplicity adjustments, effectively controlling Type I error while enhancing statistical power. It offers flexibility for various data distributions encountered in AD research and maximizes the utilization of longitudinal data. Simulations across realistic clinical trial scenarios, including those with conflicting treatment effects, and real-data applications demonstrate the LRST's performance, underscoring its potential as a valuable tool in AD clinical trials.</p>","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19466315.2025.2458018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative disorders such as Alzheimer's disease (AD) present a significant global health challenge, characterized by cognitive decline, functional impairment, and other debilitating effects. Current AD clinical trials often assess multiple longitudinal primary endpoints to comprehensively evaluate treatment efficacy. Traditional methods, however, may fail to capture global treatment effects, require larger sample sizes due to multiplicity adjustments, and may not fully utilize the available longitudinal data. To address these limitations, we introduce the Longitudinal Rank Sum Test (LRST), a novel nonparametric rank-based omnibus test statistic. The LRST enables a comprehensive assessment of treatment efficacy across multiple endpoints and time points without the need for multiplicity adjustments, effectively controlling Type I error while enhancing statistical power. It offers flexibility for various data distributions encountered in AD research and maximizes the utilization of longitudinal data. Simulations across realistic clinical trial scenarios, including those with conflicting treatment effects, and real-data applications demonstrate the LRST's performance, underscoring its potential as a valuable tool in AD clinical trials.

临床试验中多个主要终点的新型纵向秩和检验:神经退行性疾病的应用。
神经退行性疾病如阿尔茨海默病(AD)是一个重大的全球健康挑战,其特征是认知能力下降、功能障碍和其他衰弱效应。目前的阿尔茨海默病临床试验通常通过多个纵向主要终点来综合评价治疗效果。然而,传统方法可能无法捕捉到整体治疗效果,由于多重调整,需要更大的样本量,并且可能无法充分利用现有的纵向数据。为了解决这些限制,我们引入了纵向秩和检验(LRST),这是一种新的基于非参数秩的综合检验统计量。LRST能够在不需要多重调整的情况下对多个终点和时间点的治疗效果进行综合评估,有效地控制了I型误差,同时提高了统计能力。它为AD研究中遇到的各种数据分布提供了灵活性,并最大限度地利用了纵向数据。模拟现实的临床试验场景,包括那些治疗效果相互冲突的场景,以及实际数据应用证明了LRST的性能,强调了其作为AD临床试验中有价值的工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Biopharmaceutical Research
Statistics in Biopharmaceutical Research MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
3.90
自引率
16.70%
发文量
56
期刊介绍: Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems. Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application). The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review. Authors can choose to publish gold open access in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信