Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori
{"title":"Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.","authors":"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori","doi":"10.1007/s11548-025-03482-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03482-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.
Methods: We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, optimizes generation speed without compromising quality.
Results: WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.
Conclusion: WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.