Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori
{"title":"Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.","authors":"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori","doi":"10.1007/s11548-025-03482-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03482-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.

Methods: We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, WPDM Fast optimizes generation speed without compromising quality.

Results: WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.

Conclusion: WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.

基于Worley-Perlin扩散的合成数据生成用于不平衡CT数据集的蛛网膜下腔出血检测。
目的:在本文中,我们提出了一种新的生成模型来生成高质量的SAH样本,提高SAH CT在不平衡数据集中的检测性能。先前的方法,如代价敏感学习和先前的扩散模型,存在过拟合或噪声引起的失真,限制了它们的有效性。准确的SAH样品生成对于更好的检测至关重要。方法:我们提出了Worley-Perlin扩散模型(WPDM),利用Worley-Perlin噪声合成多种高质量的SAH图像。WPDM解决了高斯噪声(均匀性)和单纯形噪声(失真)的局限性,增强了生成SAH图像的鲁棒性。此外,WPDM Fast在不影响质量的情况下优化生成速度。结果:WPDM有效提高了不同失衡比数据集的分类准确率。值得注意的是,使用wpdm生成的样本训练的分类器在1:36的不平衡比下获得了f1得分0.857,超过了目前的水平2.3个百分点。结论:WPDM克服了高斯和单纯形噪声模型的局限性,生成了高质量、逼真的SAH图像。它显著提高了在不平衡设置下的分类性能,为SAH CT检测提供了一个鲁棒的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信