{"title":"H4K79 and H4K91 histone lactylation, newly identified lactylation sites enriched in breast cancer.","authors":"Jiena Liu, Liuying Zhao, Meisi Yan, Shengye Jin, Lingmin Shang, Jianyu Wang, Qin Wang, Shilu Zhao, Zibo Shen, Tong Liu, Hao Wu, Da Pang","doi":"10.1186/s13046-025-03512-6","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming and epigenetic modification are two hallmarks of cancer. Protein lysine lactylation (Kla) is a novel type of glycolysis lactate-triggered posttranslational modification. However, the role of Kla in breast cancer (BC) remains largely unknown. Here, western blot, and immunohistochemical (IHC) staining of BC tissues revealed that global Kla levels were upregulated in BC tissues, and high levels of Kla were correlated with poor prognosis of patients with BC. A series of in vitro and in vivo assays demonstrated that interruption of glycolysis by lactate dehydrogenase (LDH) inhibitor or silencing LDHA and LDHB repressed the malignant behaviors of BC cells. Moreover, 4D label-free quantitative lactylproteomics analysis of BC tissues and cells revealed that lactylated proteins widely existed in several subcellular compartments and were closely associated with various cancer-related biological processes. Notably, two previously unresearched sites of histone lactylation, H4K79 lactylation (H4K79la) and H4K91 lactylation (H4K91la), were identified to be hyperlactylated in cancer tissues and cells. Glycolytic genes, such as lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), and hexokinase 1 (HK1) were identified to be the potential candidate genes epigenetically regulated by H4K79la and H4K91la by intersecting through chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and TCGA-BRCA database. Pharmacological inhibition of glycolysis downregulated H4K79 and H4K91 lactylation and suppressed the expression of glycolytic genes, whereas treatment with sodium lactate exhibited the opposite effects. Additionally, E1A-binding protein p300 (P300) acted as lysine lactyltransferase to regulate H4K79la and H4K91la, and control the transcription and expression of downstream glycolytic genes in BC cells. The results revealed an intriguing positive feedback loop formed by glycolysis/H4K79la/H4K91la/glycolytic genes in BC, highlighting the relationship between metabolic reprogramming and epigenetic regulation. These findings provide new therapeutic targets for patients with BC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"252"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03512-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic reprogramming and epigenetic modification are two hallmarks of cancer. Protein lysine lactylation (Kla) is a novel type of glycolysis lactate-triggered posttranslational modification. However, the role of Kla in breast cancer (BC) remains largely unknown. Here, western blot, and immunohistochemical (IHC) staining of BC tissues revealed that global Kla levels were upregulated in BC tissues, and high levels of Kla were correlated with poor prognosis of patients with BC. A series of in vitro and in vivo assays demonstrated that interruption of glycolysis by lactate dehydrogenase (LDH) inhibitor or silencing LDHA and LDHB repressed the malignant behaviors of BC cells. Moreover, 4D label-free quantitative lactylproteomics analysis of BC tissues and cells revealed that lactylated proteins widely existed in several subcellular compartments and were closely associated with various cancer-related biological processes. Notably, two previously unresearched sites of histone lactylation, H4K79 lactylation (H4K79la) and H4K91 lactylation (H4K91la), were identified to be hyperlactylated in cancer tissues and cells. Glycolytic genes, such as lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), and hexokinase 1 (HK1) were identified to be the potential candidate genes epigenetically regulated by H4K79la and H4K91la by intersecting through chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and TCGA-BRCA database. Pharmacological inhibition of glycolysis downregulated H4K79 and H4K91 lactylation and suppressed the expression of glycolytic genes, whereas treatment with sodium lactate exhibited the opposite effects. Additionally, E1A-binding protein p300 (P300) acted as lysine lactyltransferase to regulate H4K79la and H4K91la, and control the transcription and expression of downstream glycolytic genes in BC cells. The results revealed an intriguing positive feedback loop formed by glycolysis/H4K79la/H4K91la/glycolytic genes in BC, highlighting the relationship between metabolic reprogramming and epigenetic regulation. These findings provide new therapeutic targets for patients with BC.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.