{"title":"Estimating racial and ethnic healthcare quality disparities using exploratory item response theory and latent class item response theory models.","authors":"Sharon-Lise Normand, Katya Zelevinsky, Marcela Horvitz-Lennon","doi":"10.1093/jrsssa/qnaf033","DOIUrl":null,"url":null,"abstract":"<p><p>Healthcare quality metrics refer to a variety of measures used to characterize what should have been done or not done for a patient or the health consequences of what was or was not done. When estimating healthcare quality, many metrics are measured and combined to provide an overall estimate either at the patient level or at higher levels, such as the provider organization or insurer. Racial and ethnic disparities are defined as the mean difference in quality between minorities and Whites not justified by underlying health conditions or patient preferences. Several statistical features of healthcare quality data have been ignored: quality is a theoretical construct not directly observable; quality metrics are measured on different scales or, if measured on the same scale, have different baseline rates; the construct may be multidimensional; and metrics are correlated within-individuals. Balancing health differences across race and ethnicity groups is challenging due to confounding. We provide an approach addressing these features, utilizing exploratory multidimensional item response theory (IRT) models and latent class IRT models to estimate quality, and optimization-based matching to adjust for confounding among the race and ethnicity groups. Quality metrics measured on 93,000 adults with schizophrenia residing in five US states illustrate approaches.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnaf033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Healthcare quality metrics refer to a variety of measures used to characterize what should have been done or not done for a patient or the health consequences of what was or was not done. When estimating healthcare quality, many metrics are measured and combined to provide an overall estimate either at the patient level or at higher levels, such as the provider organization or insurer. Racial and ethnic disparities are defined as the mean difference in quality between minorities and Whites not justified by underlying health conditions or patient preferences. Several statistical features of healthcare quality data have been ignored: quality is a theoretical construct not directly observable; quality metrics are measured on different scales or, if measured on the same scale, have different baseline rates; the construct may be multidimensional; and metrics are correlated within-individuals. Balancing health differences across race and ethnicity groups is challenging due to confounding. We provide an approach addressing these features, utilizing exploratory multidimensional item response theory (IRT) models and latent class IRT models to estimate quality, and optimization-based matching to adjust for confounding among the race and ethnicity groups. Quality metrics measured on 93,000 adults with schizophrenia residing in five US states illustrate approaches.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.