{"title":"Vinburnine potentiates anti-PD1 immunotherapy in melanoma through IL-24 secretion via P38/MAPK/ATF3 signaling.","authors":"Susi Zhu, Xu Zhang, Waner Liu, Zhe Zhou, Siyu Xiong, Xiang Chen, Cong Peng","doi":"10.1186/s13046-025-03521-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Melanoma, a highly aggressive and immunogenic skin cancer, often develops resistance to immunotherapy due to the immunosuppressive tumor microenvironment (TME). Although PD-1/PD-L1 inhibitors have significantly improved treatment outcomes, 30%-40% of patients exhibit no response or develop resistance. Mechanisms such as T-cell exhaustion within the TME limit therapeutic efficacy, necessitating the exploration of novel strategies to enhance immune responses.</p><p><strong>Methods: </strong>This study evaluated the effects of Vinburnine (Vin) on melanoma cell proliferation, migration, invasion, apoptosis, and DNA damage through in vitro experiments. Transcriptomic analysis, Western blot, RT-PCR, dual-luciferase reporter assays, and ChIP experiments revealed the mechanism by which Vin regulates IL-24 via ATF3. The anti-tumor efficacy of Vin or IL-24 in combination with PD-1 monoclonal antibody, as well as their modulation of the tumor microenvironment, were validated through luciferase-mediated cytotoxicity assays and a murine melanoma model. Additionally, the correlation between IL-24 expression and patient prognosis or immunotherapy response was analyzed using public databases.</p><p><strong>Results: </strong>This study delineates the phenotypic mechanisms by which vinburnine suppresses melanoma proliferation. Vin induces reactive oxygen species (ROS) generation, leading to DNA damage and the subsequent activation of the apoptotic cascade in melanoma cells. Additionally, vinburnine activates the P38/MAPK/ATF3 signaling axis, which drives the secretion of interleukin-24 (IL-24), enhancing the functionality of CD8<sup>+</sup> T cells and modulating the tumor immune microenvironment to favor antitumor immunity. Notably, the combination of vinburnine with anti-PD-1 antibody therapy produces synergistic effects, effectively addressing certain limitations of current immunotherapeutic approaches.</p><p><strong>Conclusions: </strong>These findings underscore the therapeutic potential of vinburnine, particularly when used in combination with immune checkpoint inhibitors, as a promising strategy for melanoma treatment.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"255"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03521-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Melanoma, a highly aggressive and immunogenic skin cancer, often develops resistance to immunotherapy due to the immunosuppressive tumor microenvironment (TME). Although PD-1/PD-L1 inhibitors have significantly improved treatment outcomes, 30%-40% of patients exhibit no response or develop resistance. Mechanisms such as T-cell exhaustion within the TME limit therapeutic efficacy, necessitating the exploration of novel strategies to enhance immune responses.
Methods: This study evaluated the effects of Vinburnine (Vin) on melanoma cell proliferation, migration, invasion, apoptosis, and DNA damage through in vitro experiments. Transcriptomic analysis, Western blot, RT-PCR, dual-luciferase reporter assays, and ChIP experiments revealed the mechanism by which Vin regulates IL-24 via ATF3. The anti-tumor efficacy of Vin or IL-24 in combination with PD-1 monoclonal antibody, as well as their modulation of the tumor microenvironment, were validated through luciferase-mediated cytotoxicity assays and a murine melanoma model. Additionally, the correlation between IL-24 expression and patient prognosis or immunotherapy response was analyzed using public databases.
Results: This study delineates the phenotypic mechanisms by which vinburnine suppresses melanoma proliferation. Vin induces reactive oxygen species (ROS) generation, leading to DNA damage and the subsequent activation of the apoptotic cascade in melanoma cells. Additionally, vinburnine activates the P38/MAPK/ATF3 signaling axis, which drives the secretion of interleukin-24 (IL-24), enhancing the functionality of CD8+ T cells and modulating the tumor immune microenvironment to favor antitumor immunity. Notably, the combination of vinburnine with anti-PD-1 antibody therapy produces synergistic effects, effectively addressing certain limitations of current immunotherapeutic approaches.
Conclusions: These findings underscore the therapeutic potential of vinburnine, particularly when used in combination with immune checkpoint inhibitors, as a promising strategy for melanoma treatment.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.