Thu Ha Ngo, Minh Hieu Tran, Hoang Bach Nguyen, Van Nam Hoang, Thi Lan Le, Hai Vu, Trung Kien Tran, Huu Khanh Nguyen, Van Mao Can, Thanh Bac Nguyen, Thanh-Hai Tran
{"title":"E-TBI: explainable outcome prediction after traumatic brain injury using machine learning.","authors":"Thu Ha Ngo, Minh Hieu Tran, Hoang Bach Nguyen, Van Nam Hoang, Thi Lan Le, Hai Vu, Trung Kien Tran, Huu Khanh Nguyen, Van Mao Can, Thanh Bac Nguyen, Thanh-Hai Tran","doi":"10.1007/s11517-025-03431-w","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is one of the most prevalent health conditions, with severity assessment serving as an initial step for management, prognosis, and targeted therapy. Existing studies on automated outcome prediction using machine learning (ML) often overlook the importance of TBI features in decision-making and the challenges posed by limited and imbalanced training data. Furthermore, many attempts have focused on quantitatively evaluating ML algorithms without explaining the decisions, making the outcomes difficult to interpret and apply for less-experienced doctors. This study presents a novel supportive tool, named E-TBI (explainable outcome prediction after TBI), designed with a user-friendly web-based interface to assist doctors in outcome prediction after TBI using machine learning. The tool is developed with the capability to visualize rules applied in the decision-making process. At the tool's core is a feature selection and classification module that receives multimodal data from TBI patients (demographic data, clinical data, laboratory test results, and CT findings). It then infers one of four TBI severity levels. This research investigates various machine learning models and feature selection techniques, ultimately identifying the optimal combination of gradient boosting machine and random forest for the task, which we refer to as GBMRF. This method enabled us to identify a small set of essential features, reducing patient testing costs by 35%, while achieving the highest accuracy rates of 88.82% and 89.78% on two datasets (a public TBI dataset and our self-collected dataset, TBI_MH103). Classification modules are available at https://github.com/auverngo110/Traumatic_Brain_Injury_103 .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03431-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) is one of the most prevalent health conditions, with severity assessment serving as an initial step for management, prognosis, and targeted therapy. Existing studies on automated outcome prediction using machine learning (ML) often overlook the importance of TBI features in decision-making and the challenges posed by limited and imbalanced training data. Furthermore, many attempts have focused on quantitatively evaluating ML algorithms without explaining the decisions, making the outcomes difficult to interpret and apply for less-experienced doctors. This study presents a novel supportive tool, named E-TBI (explainable outcome prediction after TBI), designed with a user-friendly web-based interface to assist doctors in outcome prediction after TBI using machine learning. The tool is developed with the capability to visualize rules applied in the decision-making process. At the tool's core is a feature selection and classification module that receives multimodal data from TBI patients (demographic data, clinical data, laboratory test results, and CT findings). It then infers one of four TBI severity levels. This research investigates various machine learning models and feature selection techniques, ultimately identifying the optimal combination of gradient boosting machine and random forest for the task, which we refer to as GBMRF. This method enabled us to identify a small set of essential features, reducing patient testing costs by 35%, while achieving the highest accuracy rates of 88.82% and 89.78% on two datasets (a public TBI dataset and our self-collected dataset, TBI_MH103). Classification modules are available at https://github.com/auverngo110/Traumatic_Brain_Injury_103 .
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).