Deep learning-based morphological analysis of human sperm.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yiran Xu, Yuqiu Chen, Boxuan Zhang, Yimo Yan, Hongen Liao, Ran Liu
{"title":"Deep learning-based morphological analysis of human sperm.","authors":"Yiran Xu, Yuqiu Chen, Boxuan Zhang, Yimo Yan, Hongen Liao, Ran Liu","doi":"10.1007/s11517-025-03418-7","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm head morphology has been identified as a characteristic that can be used to predict a male's semen quality. Here, harnessing the close relationship considering sperm head shape to quality and morphology, we propose a joint learning model for sperm head segmentation and morphological category prediction. In the model, the sperm category prediction and the ellipticity, calculated by using the segmented sperm head profile, are used to synthesize the morphology to which the sperm belongs. In traditional clinical testing, fertility experts analyze sperm morphology by 2D images of sperm samples, which cannot represent the whole character of their quality and morphological category. To overcome the problem that single-angle 2D images cannot accurately identify sperm morphology, we use a deep-learning-based tracking and detection system to dynamically acquire sperm images with multiple frames and angles and then use the multi-frame and multi-angle time-series images of sperm to determine sperm morphology based on the multi-task model proposed in this study. Performing better than 3D sperm reconstruction and traditional computer-assisted sperm assessment systems, this approach enables end-to-end analysis of viable spermatozoa, requiring minimal computing power and utilizing equipment already available in most embryology laboratories.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03418-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Sperm head morphology has been identified as a characteristic that can be used to predict a male's semen quality. Here, harnessing the close relationship considering sperm head shape to quality and morphology, we propose a joint learning model for sperm head segmentation and morphological category prediction. In the model, the sperm category prediction and the ellipticity, calculated by using the segmented sperm head profile, are used to synthesize the morphology to which the sperm belongs. In traditional clinical testing, fertility experts analyze sperm morphology by 2D images of sperm samples, which cannot represent the whole character of their quality and morphological category. To overcome the problem that single-angle 2D images cannot accurately identify sperm morphology, we use a deep-learning-based tracking and detection system to dynamically acquire sperm images with multiple frames and angles and then use the multi-frame and multi-angle time-series images of sperm to determine sperm morphology based on the multi-task model proposed in this study. Performing better than 3D sperm reconstruction and traditional computer-assisted sperm assessment systems, this approach enables end-to-end analysis of viable spermatozoa, requiring minimal computing power and utilizing equipment already available in most embryology laboratories.

基于深度学习的人类精子形态分析。
精子头部形态被认为是一种可以用来预测男性精液质量的特征。本文利用精子头部形状与质量和形态的密切关系,提出了一种用于精子头部分割和形态分类预测的联合学习模型。在该模型中,利用精子分类预测和精子头部轮廓分段计算的椭圆度来综合精子所属的形态。在传统的临床检测中,生育专家通过精子样本的二维图像来分析精子形态,这并不能代表精子质量和形态类别的全部特征。为了克服单角度二维图像无法准确识别精子形态的问题,我们采用基于深度学习的跟踪检测系统,动态获取多帧、多角度的精子图像,然后基于本研究提出的多任务模型,利用精子的多帧、多角度时间序列图像确定精子形态。这种方法比3D精子重建和传统的计算机辅助精子评估系统性能更好,能够对活精子进行端到端分析,只需要最小的计算能力,并利用大多数胚胎学实验室现有的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信