Yiran Xu, Yuqiu Chen, Boxuan Zhang, Yimo Yan, Hongen Liao, Ran Liu
{"title":"Deep learning-based morphological analysis of human sperm.","authors":"Yiran Xu, Yuqiu Chen, Boxuan Zhang, Yimo Yan, Hongen Liao, Ran Liu","doi":"10.1007/s11517-025-03418-7","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm head morphology has been identified as a characteristic that can be used to predict a male's semen quality. Here, harnessing the close relationship considering sperm head shape to quality and morphology, we propose a joint learning model for sperm head segmentation and morphological category prediction. In the model, the sperm category prediction and the ellipticity, calculated by using the segmented sperm head profile, are used to synthesize the morphology to which the sperm belongs. In traditional clinical testing, fertility experts analyze sperm morphology by 2D images of sperm samples, which cannot represent the whole character of their quality and morphological category. To overcome the problem that single-angle 2D images cannot accurately identify sperm morphology, we use a deep-learning-based tracking and detection system to dynamically acquire sperm images with multiple frames and angles and then use the multi-frame and multi-angle time-series images of sperm to determine sperm morphology based on the multi-task model proposed in this study. Performing better than 3D sperm reconstruction and traditional computer-assisted sperm assessment systems, this approach enables end-to-end analysis of viable spermatozoa, requiring minimal computing power and utilizing equipment already available in most embryology laboratories.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03418-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sperm head morphology has been identified as a characteristic that can be used to predict a male's semen quality. Here, harnessing the close relationship considering sperm head shape to quality and morphology, we propose a joint learning model for sperm head segmentation and morphological category prediction. In the model, the sperm category prediction and the ellipticity, calculated by using the segmented sperm head profile, are used to synthesize the morphology to which the sperm belongs. In traditional clinical testing, fertility experts analyze sperm morphology by 2D images of sperm samples, which cannot represent the whole character of their quality and morphological category. To overcome the problem that single-angle 2D images cannot accurately identify sperm morphology, we use a deep-learning-based tracking and detection system to dynamically acquire sperm images with multiple frames and angles and then use the multi-frame and multi-angle time-series images of sperm to determine sperm morphology based on the multi-task model proposed in this study. Performing better than 3D sperm reconstruction and traditional computer-assisted sperm assessment systems, this approach enables end-to-end analysis of viable spermatozoa, requiring minimal computing power and utilizing equipment already available in most embryology laboratories.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).