{"title":"Deep learning-based dual-energy subtraction synthesis from single-energy kV x-ray fluoroscopy for markerless tumor tracking.","authors":"Jiaoyang Wang, Kei Ichiji, Yuwen Zeng, Xiaoyong Zhang, Yoshihiro Takai, Noriyasu Homma","doi":"10.1007/s11517-025-03432-9","DOIUrl":null,"url":null,"abstract":"<p><p>Markerless tumor tracking in x-ray fluoroscopic images is an important technique for achieving precise dose delivery for moving lung tumors during radiation therapy. However, accurate tumor tracking is challenging due to the poor visibility of the target tumor overlapped by other organs such as rib bones. Dual-energy (DE) x-ray fluoroscopy can enhance tracking accuracy with improved tumor visibility by suppressing bones. However, DE x-ray imaging requires special hardware, limiting its clinical use. This study presents a deep learning-based DE subtraction (DES) synthesis method to avoid hardware limitations and enhance tracking accuracy. The proposed method employs a residual U-Net model trained on a simulated DES dataset from a digital phantom to synthesize DES from single-energy (SE) fluoroscopy. Experimental results using a digital phantom showed quantitative evaluation results of synthesis quality. Also, experimental results using clinical SE fluoroscopic images of ten lung cancer patients showed improved tumor tracking accuracy using synthesized DES images, reducing errors from 1.80 to 1.68 mm on average. The tracking success rate within a 25% movement range increased from 50.2% (SE) to 54.9% (DES). These findings indicate the feasibility of deep learning-based DES synthesis for markerless tumor tracking, offering a potential alternative to hardware-dependent DE imaging.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03432-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Markerless tumor tracking in x-ray fluoroscopic images is an important technique for achieving precise dose delivery for moving lung tumors during radiation therapy. However, accurate tumor tracking is challenging due to the poor visibility of the target tumor overlapped by other organs such as rib bones. Dual-energy (DE) x-ray fluoroscopy can enhance tracking accuracy with improved tumor visibility by suppressing bones. However, DE x-ray imaging requires special hardware, limiting its clinical use. This study presents a deep learning-based DE subtraction (DES) synthesis method to avoid hardware limitations and enhance tracking accuracy. The proposed method employs a residual U-Net model trained on a simulated DES dataset from a digital phantom to synthesize DES from single-energy (SE) fluoroscopy. Experimental results using a digital phantom showed quantitative evaluation results of synthesis quality. Also, experimental results using clinical SE fluoroscopic images of ten lung cancer patients showed improved tumor tracking accuracy using synthesized DES images, reducing errors from 1.80 to 1.68 mm on average. The tracking success rate within a 25% movement range increased from 50.2% (SE) to 54.9% (DES). These findings indicate the feasibility of deep learning-based DES synthesis for markerless tumor tracking, offering a potential alternative to hardware-dependent DE imaging.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).