{"title":"Artificial intelligence in antibody design and development: harnessing the power of computational approaches.","authors":"Soudabeh Kavousipour, Mahdi Barazesh, Shiva Mohammadi","doi":"10.1007/s11517-025-03429-4","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies are a key therapeutic class in pharma, enabling precise targeting of disease agents. Traditional methods for their design are slow, costly, and limited. Advances in high-throughput data and artificial intelligence (AI) including machine learning, deep learning, and reinforcement learning have revolutionized antibody sequence design, 3D structure prediction, and optimization of affinity and specificity. Computational approaches enable rapid library generation and efficient screening, reduce experimental sampling, and support rational design with improved immune response. Combining AI with experimental methods allows for de novo, multifunctional antibody development. AI also accelerates the discovery process, target identification, and candidate prioritization by analyzing large datasets, predicting interactions, and guiding modifications to enhance efficacy and safety. Despite challenges, ongoing research continues to expand the potential of AI and transform antibody development and the pharmaceutical industry. Antibodies are a key therapeutic class in pharma, enabling precise targeting of disease agents. Traditional methods for their design are slow, costly, and limited. Advances in high-throughput data and artificial intelligence (AI) including machine learning, deep learning, and reinforcement learning have revolutionized antibody sequence design, 3D structure prediction, and optimization of affinity and specificity. Computational approaches enable rapid library generation and efficient screening, reduce experimental sampling, and support rational design with improved immune response. Combining AI with experimental methods allows for de novo, multifunctional antibody development. AI also accelerates the discovery process, target identification, and candidate prioritization by analyzing large datasets, predicting interactions, and guiding modifications to enhance efficacy and safety. Despite challenges, ongoing research continues to expand the potential of AI and transform antibody development and the pharmaceutical industry.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03429-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies are a key therapeutic class in pharma, enabling precise targeting of disease agents. Traditional methods for their design are slow, costly, and limited. Advances in high-throughput data and artificial intelligence (AI) including machine learning, deep learning, and reinforcement learning have revolutionized antibody sequence design, 3D structure prediction, and optimization of affinity and specificity. Computational approaches enable rapid library generation and efficient screening, reduce experimental sampling, and support rational design with improved immune response. Combining AI with experimental methods allows for de novo, multifunctional antibody development. AI also accelerates the discovery process, target identification, and candidate prioritization by analyzing large datasets, predicting interactions, and guiding modifications to enhance efficacy and safety. Despite challenges, ongoing research continues to expand the potential of AI and transform antibody development and the pharmaceutical industry. Antibodies are a key therapeutic class in pharma, enabling precise targeting of disease agents. Traditional methods for their design are slow, costly, and limited. Advances in high-throughput data and artificial intelligence (AI) including machine learning, deep learning, and reinforcement learning have revolutionized antibody sequence design, 3D structure prediction, and optimization of affinity and specificity. Computational approaches enable rapid library generation and efficient screening, reduce experimental sampling, and support rational design with improved immune response. Combining AI with experimental methods allows for de novo, multifunctional antibody development. AI also accelerates the discovery process, target identification, and candidate prioritization by analyzing large datasets, predicting interactions, and guiding modifications to enhance efficacy and safety. Despite challenges, ongoing research continues to expand the potential of AI and transform antibody development and the pharmaceutical industry.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).