{"title":"Microglial metabolic reprogramming: Aucubin inhibits aldose reductase to reverse diabetic neuropathic pain.","authors":"Bin Li","doi":"10.4239/wjd.v16.i8.110285","DOIUrl":null,"url":null,"abstract":"<p><p>This letter critically comments on the article by Zheng <i>et al</i> investigating the role of aucubin in alleviating diabetic neuropathic pain (DNP). DNP arises from hyperglycaemia-induced nerve injury and microglial reprogramming toward aerobic glycolysis. Aldose reductase (also known as AKR1B1) redirects excess glucose flux through the polyol pathway, thus increasing oxidative stress and inflammation. Zheng <i>et al</i> show that aucubin, a plant iridoid glycoside, reverses streptozotocin-induced mechanical and thermal hypersensitivity and anxiety-like behaviour in mice. Mechanistically, aucubin restores microglial morphology, reduces glycolytic flux, enhances oxidative phosphorylation and lowers tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels in spinal tissue and cultures of the BV-2 microglial cell line. Network pharmacology and molecular docking analyses identify AKR1B1 as a key target, confirmed by the fact that short hairpin RNA knockdown of AKR1B1 eliminates the effects of aucubin. Contrary to the other studies, this study uniquely implicates the polyol pathway in microglial immunometabolism.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 8","pages":"110285"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i8.110285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
This letter critically comments on the article by Zheng et al investigating the role of aucubin in alleviating diabetic neuropathic pain (DNP). DNP arises from hyperglycaemia-induced nerve injury and microglial reprogramming toward aerobic glycolysis. Aldose reductase (also known as AKR1B1) redirects excess glucose flux through the polyol pathway, thus increasing oxidative stress and inflammation. Zheng et al show that aucubin, a plant iridoid glycoside, reverses streptozotocin-induced mechanical and thermal hypersensitivity and anxiety-like behaviour in mice. Mechanistically, aucubin restores microglial morphology, reduces glycolytic flux, enhances oxidative phosphorylation and lowers tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels in spinal tissue and cultures of the BV-2 microglial cell line. Network pharmacology and molecular docking analyses identify AKR1B1 as a key target, confirmed by the fact that short hairpin RNA knockdown of AKR1B1 eliminates the effects of aucubin. Contrary to the other studies, this study uniquely implicates the polyol pathway in microglial immunometabolism.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.