{"title":"AUSPEX: An integrated open-source decision-making framework for UAVs in rescue missions.","authors":"Björn Döschl, Kai Sommer, Jane Jean Kiam","doi":"10.3389/frobt.2025.1583479","DOIUrl":null,"url":null,"abstract":"<p><p>Unmanned aerial vehicles (UAVs) have become paramount for search and rescue (SAR) missions due to their ability to access hazardous and challenging environments and to rapidly provide cost-effective aerial situational awareness. Nevertheless, current UAV systems are designed for specific tasks, often focusing on benchmarking use cases. Therefore, they offer limited adaptability for the diverse decision-making demands of SAR missions. Furthermore, commercially available integrated UAV systems are non-open-source, preventing further extension with state-of-the-art decision-making algorithms. In this paper, we introduce Automated Unmanned Aerial Swarm System for Planning and EXecution (AUSPEX), which is a holistic, modular, and open-source framework tailored specifically for enhancing the decision-making capabilities of UAV systems. AUSPEX integrates diverse capabilities for knowledge representation, perception, planning, and execution with state-of-the-art decision-making algorithms. Additionally, AUSPEX considers the heterogeneity of available UAV platforms and offers the possibility of including off-the-shelf and generic UAVs, with an open architecture into the AUSPEX ecosystem. The framework relies only on open-source components to ensure transparency, as well as system scalability and extensibility. We demonstrate AUSPEX's integration with the Unreal Engine-based simulation framework REAP for software-in-the-loop validation and a platform-independent graphical user interface (AUGUR). We demonstrate how AUSPEX can be used for generic scenarios in SAR missions while highlighting its potential for future extensibility.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1583479"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1583479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) have become paramount for search and rescue (SAR) missions due to their ability to access hazardous and challenging environments and to rapidly provide cost-effective aerial situational awareness. Nevertheless, current UAV systems are designed for specific tasks, often focusing on benchmarking use cases. Therefore, they offer limited adaptability for the diverse decision-making demands of SAR missions. Furthermore, commercially available integrated UAV systems are non-open-source, preventing further extension with state-of-the-art decision-making algorithms. In this paper, we introduce Automated Unmanned Aerial Swarm System for Planning and EXecution (AUSPEX), which is a holistic, modular, and open-source framework tailored specifically for enhancing the decision-making capabilities of UAV systems. AUSPEX integrates diverse capabilities for knowledge representation, perception, planning, and execution with state-of-the-art decision-making algorithms. Additionally, AUSPEX considers the heterogeneity of available UAV platforms and offers the possibility of including off-the-shelf and generic UAVs, with an open architecture into the AUSPEX ecosystem. The framework relies only on open-source components to ensure transparency, as well as system scalability and extensibility. We demonstrate AUSPEX's integration with the Unreal Engine-based simulation framework REAP for software-in-the-loop validation and a platform-independent graphical user interface (AUGUR). We demonstrate how AUSPEX can be used for generic scenarios in SAR missions while highlighting its potential for future extensibility.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.