{"title":"Perspectives on integrating artificial intelligence and single-cell omics for cellular plasticity research.","authors":"Ahmed Ghobashi, Qin Ma","doi":"10.1002/qub2.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular plasticity enables cells to dynamically adapt to environmental changes by altering their phenotype. This plasticity plays a crucial role in tissue repair and regeneration and contributes to pathological processes such as cancer metastasis. Advances in single-cell omics have significantly advanced the study of cellular states and provided new opportunities for accurate cell classification and uncovering cellular transitions. In this perspective, we emphasize integrating chromatin accessibility data and extrinsic factors, such as microenvironmental cues, with single-cell transcriptomic data to develop holistic models for identifying plastic cell states. Additionally, coupling artificial intelligence with single-cell omics offers transformative potential to address existing challenges and fill gaps in identifying and characterizing plastic cells. We envision the development of a universal plasticity metric, a standardized metric for quantifying cellular plasticity. This metric would enable consistent measurement across diverse studies, creating a unified framework that bridges fields such as developmental biology, cancer research, and regenerative medicine. Fostering innovative approaches to identifying and analyzing cellular plasticity promises not only to deepen our understanding of cellular plasticity but also to accelerate therapeutic advancements, paving the way for novel precision medicine strategies to treat complex diseases such as cancer.</p>","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":"13 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/qub2.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular plasticity enables cells to dynamically adapt to environmental changes by altering their phenotype. This plasticity plays a crucial role in tissue repair and regeneration and contributes to pathological processes such as cancer metastasis. Advances in single-cell omics have significantly advanced the study of cellular states and provided new opportunities for accurate cell classification and uncovering cellular transitions. In this perspective, we emphasize integrating chromatin accessibility data and extrinsic factors, such as microenvironmental cues, with single-cell transcriptomic data to develop holistic models for identifying plastic cell states. Additionally, coupling artificial intelligence with single-cell omics offers transformative potential to address existing challenges and fill gaps in identifying and characterizing plastic cells. We envision the development of a universal plasticity metric, a standardized metric for quantifying cellular plasticity. This metric would enable consistent measurement across diverse studies, creating a unified framework that bridges fields such as developmental biology, cancer research, and regenerative medicine. Fostering innovative approaches to identifying and analyzing cellular plasticity promises not only to deepen our understanding of cellular plasticity but also to accelerate therapeutic advancements, paving the way for novel precision medicine strategies to treat complex diseases such as cancer.
期刊介绍:
Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.