Jing Zhai, Youngwon Choi, Xingyi Yang, Yin Chen, Kenneth Knox, Homer L Twigg, Joong-Ho Won, Hua Zhou, Jin J Zhou
{"title":"DeepBiome: A Phylogenetic Tree Informed Deep Neural Network for Microbiome Data Analysis.","authors":"Jing Zhai, Youngwon Choi, Xingyi Yang, Yin Chen, Kenneth Knox, Homer L Twigg, Joong-Ho Won, Hua Zhou, Jin J Zhou","doi":"10.1007/s12561-024-09434-9","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence linking the microbiome to human health is rapidly growing. The microbiome profile has the potential as a novel predictive biomarker for many diseases. However, tables of bacterial counts are typically sparse, and bacteria are classified within a hierarchy of taxonomic levels, ranging from species to phylum. Existing tools focus on identifying microbiome associations at either the community level or a specific, pre-defined taxonomic level. Incorporating the evolutionary relationship between bacteria can enhance data interpretation. This approach allows for aggregating microbiome contributions, leading to more accurate and interpretable results. We present DeepBiome, a phylogeny-informed neural network architecture, to predict phenotypes from microbiome counts and uncover the microbiome-phenotype association network. It utilizes microbiome abundance as input and employs phylogenetic taxonomy to guide the neural network's architecture. Leveraging phylogenetic information, DeepBiome is applicable to both regression and reduces the need for extensive tuning of the deep learning architecture, minimizes overfitting, and, crucially, enables the visualization of the path from microbiome counts to disease. It classification problems. Simulation studies and real-life data analysis have shown that DeepBiome is both highly accurate and efficient. It offers deep insights into complex microbiome-phenotype associations, even with small to moderate training sample sizes. In practice, the specific taxonomic level at which microbiome clusters tag the association remains unknown. Therefore, the main advantage of the presented method over other analytical methods is that it offers an ecological and evolutionary understanding of host-microbe interactions, which is important for microbiome-based medicine. DeepBiome is implemented using Python packages Keras and TensorFlow. It is an open-source tool available at https://github.com/Young-won/DeepBiome.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"17 1","pages":"191-215"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-024-09434-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence linking the microbiome to human health is rapidly growing. The microbiome profile has the potential as a novel predictive biomarker for many diseases. However, tables of bacterial counts are typically sparse, and bacteria are classified within a hierarchy of taxonomic levels, ranging from species to phylum. Existing tools focus on identifying microbiome associations at either the community level or a specific, pre-defined taxonomic level. Incorporating the evolutionary relationship between bacteria can enhance data interpretation. This approach allows for aggregating microbiome contributions, leading to more accurate and interpretable results. We present DeepBiome, a phylogeny-informed neural network architecture, to predict phenotypes from microbiome counts and uncover the microbiome-phenotype association network. It utilizes microbiome abundance as input and employs phylogenetic taxonomy to guide the neural network's architecture. Leveraging phylogenetic information, DeepBiome is applicable to both regression and reduces the need for extensive tuning of the deep learning architecture, minimizes overfitting, and, crucially, enables the visualization of the path from microbiome counts to disease. It classification problems. Simulation studies and real-life data analysis have shown that DeepBiome is both highly accurate and efficient. It offers deep insights into complex microbiome-phenotype associations, even with small to moderate training sample sizes. In practice, the specific taxonomic level at which microbiome clusters tag the association remains unknown. Therefore, the main advantage of the presented method over other analytical methods is that it offers an ecological and evolutionary understanding of host-microbe interactions, which is important for microbiome-based medicine. DeepBiome is implemented using Python packages Keras and TensorFlow. It is an open-source tool available at https://github.com/Young-won/DeepBiome.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.