A New Method for Dynamic Brain Connectivity Analysis Based on Tensor Decomposition in Tinnitus Using High-density Electroencephalogram in Source Domain.

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-08-06 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_75_24
Moein Bahman, Seyed Saman Sajadi, Iman Ghodrati Toostani, Bahador MakkiAbadi
{"title":"A New Method for Dynamic Brain Connectivity Analysis Based on Tensor Decomposition in Tinnitus Using High-density Electroencephalogram in Source Domain.","authors":"Moein Bahman, Seyed Saman Sajadi, Iman Ghodrati Toostani, Bahador MakkiAbadi","doi":"10.4103/jmss.jmss_75_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Functional connectivity (FC), defined as the statistical reliance among different brain regions, has been an effective tool for studying cognitive brain functions. The majority of existing FC-based research has relied on the premise that networks are temporally stationary. However, there exist few research that support nonstationarity of FC which can be due to cognitive functioning. However, still there is a gap in tracking the dynamics of FC to gain a deeper understanding of how brain networks form and adapt in response to therapeutic interventions by identifying the change points that signify substantial shifts in network connectivity across the participants.</p><p><strong>Methods: </strong>The proposed approach in this study is based on tensor representation of FC networks of the source signals of electroencephalogram (EEG) activities yielding a multi-mode tensor. Then analysis of variance has been used to investigate changing points in connectivity of brain activity in sources domain in different conditions of tasks, frequency bands, and among subjects in time. High-density EEG signals (256 channels) were acquired from 30 tinnitus patients under visual (positive emotion induction) and transcranial direct current stimulation (tDCS) stimuli.</p><p><strong>Results: </strong>The proposed method of this study could effectively identify the significant brain connectivity change points, indicating enhanced effectiveness in capturing connectivity shifts comparing to conventional methods. Findings in tinnitus patients suggest that visual stimulation alone may not significantly alter brain connectivity networks.</p><p><strong>Conclusion: </strong>Based on the results, a combination of visual stimulation with simultaneous High-Definition tDCS is recommended, potentially informing optimal intervention strategies to enhance tinnitus treatment effectiveness.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"23"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_75_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Functional connectivity (FC), defined as the statistical reliance among different brain regions, has been an effective tool for studying cognitive brain functions. The majority of existing FC-based research has relied on the premise that networks are temporally stationary. However, there exist few research that support nonstationarity of FC which can be due to cognitive functioning. However, still there is a gap in tracking the dynamics of FC to gain a deeper understanding of how brain networks form and adapt in response to therapeutic interventions by identifying the change points that signify substantial shifts in network connectivity across the participants.

Methods: The proposed approach in this study is based on tensor representation of FC networks of the source signals of electroencephalogram (EEG) activities yielding a multi-mode tensor. Then analysis of variance has been used to investigate changing points in connectivity of brain activity in sources domain in different conditions of tasks, frequency bands, and among subjects in time. High-density EEG signals (256 channels) were acquired from 30 tinnitus patients under visual (positive emotion induction) and transcranial direct current stimulation (tDCS) stimuli.

Results: The proposed method of this study could effectively identify the significant brain connectivity change points, indicating enhanced effectiveness in capturing connectivity shifts comparing to conventional methods. Findings in tinnitus patients suggest that visual stimulation alone may not significantly alter brain connectivity networks.

Conclusion: Based on the results, a combination of visual stimulation with simultaneous High-Definition tDCS is recommended, potentially informing optimal intervention strategies to enhance tinnitus treatment effectiveness.

基于源域高密度脑电图张量分解的耳鸣动态脑连通性分析新方法
背景:功能连通性(Functional connectivity, FC)被定义为大脑不同区域之间的统计依赖,是研究大脑认知功能的有效工具。现有的大多数基于fc的研究都依赖于网络暂时静止的前提。然而,很少有研究支持FC的非平稳性,这可能是由于认知功能。然而,在追踪FC动态方面仍然存在差距,通过识别表明参与者网络连接发生重大变化的变化点,来更深入地了解大脑网络是如何形成和适应治疗干预的。方法:本研究提出的方法是基于脑电图(EEG)活动源信号的FC网络的张量表示,产生多模张量。在此基础上,采用方差分析的方法研究了不同任务条件下、不同频带条件下、不同被试间脑源域连通性的变化点。对30例耳鸣患者在视觉(积极情绪诱导)和经颅直流电刺激(tDCS)两种刺激下获得256个通道的高密度脑电图信号。结果:本研究提出的方法可以有效识别重要的脑连接变化点,与传统方法相比,在捕捉连接变化方面的有效性有所提高。耳鸣患者的研究结果表明,单独的视觉刺激可能不会显著改变大脑连接网络。结论:基于上述结果,建议将视觉刺激与同时高清tDCS相结合,为提高耳鸣治疗效果提供最佳干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信