Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Rahaf Alsohemi, Samia Dardouri
{"title":"Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture.","authors":"Rahaf Alsohemi, Samia Dardouri","doi":"10.3390/jimaging11080279","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and early classification of retinal diseases such as diabetic retinopathy, cataract, and glaucoma is essential for preventing vision loss and improving clinical outcomes. Manual diagnosis from fundus images is often time-consuming and error-prone, motivating the development of automated solutions. This study proposes a deep learning-based classification model using a pretrained EfficientNetB3 architecture, fine-tuned on a publicly available Kaggle retinal image dataset. The model categorizes images into four classes: cataract, diabetic retinopathy, glaucoma, and healthy. Key enhancements include transfer learning, data augmentation, and optimization via the Adam optimizer with a cosine annealing scheduler. The proposed model achieved a classification accuracy of 95.12%, with a precision of 95.21%, recall of 94.88%, F1-score of 95.00%, Dice Score of 94.91%, Jaccard Index of 91.2%, and an MCC of 0.925. These results demonstrate the model's robustness and potential to support automated retinal disease diagnosis in clinical settings.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and early classification of retinal diseases such as diabetic retinopathy, cataract, and glaucoma is essential for preventing vision loss and improving clinical outcomes. Manual diagnosis from fundus images is often time-consuming and error-prone, motivating the development of automated solutions. This study proposes a deep learning-based classification model using a pretrained EfficientNetB3 architecture, fine-tuned on a publicly available Kaggle retinal image dataset. The model categorizes images into four classes: cataract, diabetic retinopathy, glaucoma, and healthy. Key enhancements include transfer learning, data augmentation, and optimization via the Adam optimizer with a cosine annealing scheduler. The proposed model achieved a classification accuracy of 95.12%, with a precision of 95.21%, recall of 94.88%, F1-score of 95.00%, Dice Score of 94.91%, Jaccard Index of 91.2%, and an MCC of 0.925. These results demonstrate the model's robustness and potential to support automated retinal disease diagnosis in clinical settings.

Abstract Image

Abstract Image

Abstract Image

基于眼底图像的高效netb3架构眼病检测。
糖尿病视网膜病变、白内障和青光眼等视网膜疾病的准确和早期分类对于预防视力丧失和改善临床结果至关重要。眼底图像的人工诊断通常耗时且容易出错,这促使了自动化解决方案的发展。本研究提出了一种基于深度学习的分类模型,该模型使用预训练的effentnetb3架构,并在公开可用的Kaggle视网膜图像数据集上进行微调。该模型将图像分为四类:白内障、糖尿病视网膜病变、青光眼和健康。关键的增强包括迁移学习、数据增强和通过带有余弦退火调度程序的Adam优化器进行的优化。该模型的分类准确率为95.12%,其中准确率为95.21%,召回率为94.88%,f1得分为95.00%,Dice得分为94.91%,Jaccard指数为91.2%,MCC为0.925。这些结果证明了该模型的稳健性和潜力,以支持自动视网膜疾病诊断在临床设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信